The recombination of electric charge carriers at the surface of semiconductors is a major limiting factor in the efficiency of optoelectronic devices, in particular, solar cells. The reduction of such recombination, commonly referred to as surface passivation, is achieved by the combined effect of a reduction in the trap states present at the surface via a chemical component, and the reduction in the charge carriers available for a recombination process, via a field effect component. Here, we propose a technique to field effect passivate silicon surfaces using the electric field effect provided by alkali ions present in a capping oxide. This technique is shown to reduce surface recombination in a controlled manner, and to be highly stable. Surface recombination velocities in the range of 6–15 cm/s are demonstrated for 1 Ω cm n-type float zone silicon using this technique, and they are observed to be constant for over 300 days, without the use of any additional surface chemical treatment. A model of trapping-mediated ionic injection is used to describe the system, and activation energies of 1.8–2 eV are deduced for de-trapping of sodium and potassium alkali ionic species.

1.
S. Y.
Herasimenka
,
C. J.
Tracy
,
V.
Sharma
,
N.
Vulic
,
W. J.
Dauksher
, and
S. G.
Bowden
,
Appl. Phys. Lett.
103
,
183903
(
2013
).
2.
M. J.
Kerr
and
A.
Cuevas
,
Semicond. Sci. Technol.
17
,
35
(
2002
).
3.
B.
Hoex
,
S. B. S.
Heil
,
E.
Langereis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
89
,
042112
(
2006
).
4.
Y.
Larionova
,
V.
Mertens
,
N.-P.
Harder
, and
R.
Brendel
,
Appl. Phys. Lett.
96
,
032105
(
2010
).
5.
W.
Soppe
,
H.
Rieffe
, and
A.
Weeber
,
Prog. Photovoltaics
13
,
551
(
2005
).
6.
R. S.
Bonilla
,
C.
Reichel
,
M.
Hermle
, and
P. R.
Wilshaw
,
Solid State Phenom.
205–206
,
346
(
2013
).
7.
K.
Jager
and
R.
Hezel
,
IEEE Trans. Electron Devices
32
,
1824
(
1985
).
8.
L.
Guo
and
R.
Hezel
,
Solid. State. Electron.
37
,
1659
(
1994
).
9.
T. W.
Hickmott
,
J. Appl. Phys.
46
,
2583
(
1975
).
10.
A.
Cuevas
and
D.
Macdonald
,
Sol. Energy
76
,
255
(
2004
).
11.
A.
Richter
,
S. W.
Glunz
,
F.
Werner
,
J.
Schmidt
, and
A.
Cuevas
,
Phys. Rev. B
86
,
165202
(
2012
).
12.
E.
Yon
,
W. H.
Ko
, and
A. B.
Kuper
,
IEEE Trans. Electron Devices
13
,
276
(
1966
).
13.
D. R.
Kerr
, in
Proceedings of the 8th Annual Reliability Physics Symposium
(
IEEE
,
1970
), pp.
1
8
.
14.
E. H.
Snow
,
A. S.
Grove
,
B. E.
Deal
, and
C. T.
Sah
,
J. Appl. Phys.
36
,
1664
(
1965
).
15.
S. R.
Hofstein
,
IEEE Trans. Electron Devices
13
,
222
(
1966
).
16.
M. R.
Boudry
and
J. P.
Stagg
,
J. Appl. Phys.
50
,
942
(
1979
).
17.
J. J.
Moré
, in
Numerical Analysis
(
Springer
,
Berlin, Heidelberg
,
1978
), pp.
105
116
.
18.
G. F.
Derbenwick
,
J. Appl. Phys.
48
,
1127
(
1977
).
19.
J. P.
Stagg
,
Appl. Phys. Lett.
31
,
532
(
1977
).
20.
P. K.
Nauta
and
M. W.
Hillen
,
J. Appl. Phys.
49
,
2862
(
1978
).
21.
G.
Greeuw
and
J. F.
Verwey
,
J. Appl. Phys.
56
,
2218
(
1984
).
23.
R. S.
Bonilla
and
P. R.
Wilshaw
, in
Energy Procedia - Proc. 3rd Silicon PV Conf.
(
Elsevier
,
Hamelin, Germany
,
2013
), pp.
816
822
.
24.
A. G.
Aberle
,
S.
Glunz
, and
W.
Warta
,
J. Appl. Phys.
71
,
4422
(
1992
).
25.
L. M.
Terman
,
Solid State Electron.
5
,
285
(
1962
).
You do not currently have access to this content.