The converse flexoelectric effect, referred as the electric field gradient induced strain, widely exists in dielectric materials, but its experimental studies have been reported by few research groups so far. In this Letter, we report our studies on the converse flexoelectric behavior of (Ba0.67Sr0.33)TiO3 ceramics and present the measured value of its flexoelectric coefficient f1212. In the experiments, the electric field gradient was generated by applying an electric field across the two lateral sides of trapezoid (Ba0.67Sr0.33)TiO3 samples. The shear displacement was measured using a laser vibrometer. The converse flexoelectric coefficient f1212 was found to be 124 ± 14 μC/m at room temperature. This result was in good agreement with the theoretical prediction of the flexoelectricity of the (Ba, Sr)TiO3 ceramics.

1.
P. V.
Yudin
and
A. K.
Tagantsev
,
Nanotechnology
24
,
432001
(
2013
).
2.
X.
Jiang
,
W.
Huang
, and
S.
Zhang
,
Nano Energy
2
,
1079
(
2013
).
3.
P.
Zubko
,
G.
Catalan
, and
A. K.
Tagantsev
,
Annu. Rev. Mater. Res.
43
,
387
(
2013
).
4.
5.
S. M.
Kogan
,
Sov. Phys. Solid State
5
,
2069
(
1964
).
6.
V. L.
Indenbom
,
E. B.
Loginov
, and
M. A.
Osipov
,
Sov. Phys. Crystallogr.
26
,
656
(
1981
).
8.
H.
Quang
and
Q.
He
,
Proc. R. Soc. London, Ser. A
467
,
2369
(
2011
).
9.
L.
Shu
,
X.
Wei
,
T.
Pang
,
X.
Yao
, and
C.
Wang
,
J. Appl. Phys.
110
,
104106
(
2011
).
10.
W.
Huang
,
X.
Yan
,
S.
Kwon
,
S.
Zhang
,
F.
Yuan
, and
X.
Jiang
,
Appl. Phys. Lett.
101
,
252903
(
2012
).
11.
A. K.
Tagantsev
,
Sov. Phys. JETP
61
,
1246
(
1985
).
12.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
81
,
3440
(
2002
).
13.
L.
Shu
,
X.
Wei
,
L.
Jin
,
Y.
Li
,
H.
Wang
, and
X.
Yao
,
Appl. Phys. Lett.
102
,
152904
(
2013
).
14.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
88
,
232902
(
2006
).
15.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
79
,
4420
(
2001
).
16.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
86
,
072905
(
2005
).
17.
Z.
Wang
,
X.
Zhang
,
X.
Wang
,
W.
Yue
,
J.
Li
,
J.
Miao
, and
W.
Zhu
,
Adv. Funct. Mater.
23
,
124
(
2013
).
18.
S.
Baskaran
,
X.
He
,
Q.
Chen
, and
J. Y.
Fu
,
Appl. Phys. Lett.
98
,
242901
(
2011
).
19.
M.
Majdoub
,
P.
Sharma
, and
T.
Cagin
,
Phys. Rev. B
77
,
125424
(
2008
).
20.
W.
Huang
,
K.
Kim
,
S. J.
Zhang
,
F. G.
Yuan
, and
X. N.
Jiang
,
Phys. Status Solidi RRL
5
,
350
(
2011
).
21.
J. Y.
Fu
,
W.
Zhu
,
N.
Li
,
N. B.
Smith
, and
L.
Cross
,
Appl. Phys. Lett
91
,
182910
(
2007
).
22.
J. Y.
Fu
and
L. E.
Cross
,
Appl. Phys. Lett.
91
,
162903
(
2007
).
23.
J. Y.
Fu
,
W.
Zhu
,
N.
Li
, and
L. E.
Cross
,
J. Appl. Phys.
100
,
024112
(
2006
).
24.
F.
Li
,
L.
Jin
,
Z.
Xu
,
D.
Wang
, and
S.
Zhang
,
Appl. Phys. Lett.
102
,
152910
(
2013
).
25.
F.
Li
,
L.
Jin
,
Z.
Xu
, and
S.
Zhang
,
Appl. Phys. Rev.
1
,
011103
(
2014
).
26.
M.
Roth
,
E. M. E.
Dulkin
,
P.
Gemeiner
, and
B.
Dkhi
,
Phys. Rev. Lett.
98
,
265701
(
2007
).
27.
V. B.
Shirokov
,
Y. I.
Yuzyuk
,
V. V.
Kalinchuk
, and
V. V.
Lemanov
,
Phys. Solid State
55
,
773
(
2013
).
28.
W.
Zhu
,
J. Y.
Fu
,
N.
Li
, and
L. E.
Cross
,
Appl. Phys. Lett.
89
,
192904
(
2006
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4882060 for more details on the experimental testing signal to noise ratio, repeated testing results and calculation details.

Supplementary Material

You do not currently have access to this content.