The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

1.
H.
Ohta
,
K.
Nomura
,
H.
Hiramatsu
,
K.
Ueda
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Solid-State Electron.
47
,
2261
(
2003
).
2.
T.
Kamiya
and
H.
Hosono
,
NPG Asia Mater.
2
,
15
(
2010
).
3.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
,
Sci. Technol. Adv. Mater.
11
,
044305
(
2010
).
4.
W.
Lim
,
E. A.
Douglas
,
S.-H.
Kim
,
D. P.
Norton
,
S. J.
Pearton
,
F.
Ren
,
H.
Shen
, and
W. H.
Chang
,
Appl. Phys. Lett.
93
,
252103
(
2008
).
5.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
,
Adv. Mater.
24
,
2945
(
2012
).
6.
R.
Martins
,
P.
Barquinha
,
I.
Ferreira
,
L.
Pereira
,
G.
Gonçalves
, and
E.
Fortunato
,
J. Appl. Phys.
101
,
044505
(
2007
).
7.
A.
Walsh
,
J. L. F. D.
Silva
, and
S.-H.
Wei
,
Chem. Mater.
21
,
5119
(
2009
).
8.
J. E.
Medvedeva
and
C. L.
Hettiarachchi
,
Phys. Rev. B
81
,
125116
(
2010
).
9.
K.
Nomura
,
T.
Kamiya
,
H.
Yanagi
,
E.
Ikenaga
,
K.
Yang
,
K.
Kobayashi
,
M.
Hirano
, and
H.
Hosono
,
Appl. Phys. Lett.
92
,
202117
(
2008
).
10.
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
,
Appl. Phys. Lett.
99
,
053505
(
2011
).
11.
B.
Ryu
,
H.-K.
Noh
,
E.-A.
Choi
, and
K. J.
Chang
,
Appl. Phys. Lett.
97
,
022108
(
2010
).
12.
H.
Oh
,
S.-M.
Yoon
,
M. K.
Ryu
,
C.-S.
Hwang
,
S.
Yang
, and
S. -H. K.
Park
,
Appl. Phys. Lett.
97
,
183502
(
2010
).
13.
H.
Omura
,
H.
Kumomi
,
K.
Nomura
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
J. Appl. Phys.
105
,
093712
(
2009
).
14.
K.
Ide
,
K.
Nomura
,
H.
Hiramatsu
,
T.
Kamiya
, and
H.
Hosono
,
J. Appl. Phys.
111
,
073513
(
2012
).
15.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
,
Phys. Status Solidi A
207
,
1698
(
2010
).
16.
H.-K.
Noh
,
K. J.
Chang
,
B.
Ryu
, and
W.-J.
Lee
,
Phys. Rev. B
84
,
115205
(
2011
).
17.
W.
Körner
,
P.
Gumbsch
, and
C.
Elsässer
,
Phys. Rev. B
86
,
165210
(
2012
).
18.
See supplementary material at http://dx.doi.org/10.1063/1.4883257 for details of optical and structural properties of the amorphous O rich samples, and the density of states calculations.
19.
J. D.
Gale
and
A. L.
Rohl
,
Mol. Simul.
29
,
291
(
2003
).
20.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
21.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
23.
E. R.
Malinowski
,
Factor Analysis in Chemistry
(
Wiley
,
1991
).
24.
D. O.
Scanlon
,
C. W.
Dunnill
,
J.
Buckeridge
,
S. A.
Shevlin
,
A. J.
Logsdail
,
S. M.
Woodley
,
C. R. A.
Catlow
,
M. J.
Powell
,
R. G.
Palgrave
,
I. P.
Parkin
 et al.,
Nature Mater.
12
,
798
(
2013
).

Supplementary Material

You do not currently have access to this content.