Intermediate band solar cells (IBSCs) are third-generation photovoltaic (PV) devices that can harvest sub-bandgap photons normally not absorbed in a single-junction solar cell. Despite the large increase in total solar energy conversion efficiency predicted for IBSC devices, substantial challenges remain to realizing these efficiency gains in practical devices. We evaluate carrier escape mechanisms in an InAs/GaAs quantum dot intermediate band p-i-n junction PV device using photocurrent measurements under sub-bandgap illumination. We show that sub-bandgap photons generate photocurrent through a two-photon absorption process, but that carrier trapping and retrapping limit the overall photocurrent. The results identify a key obstacle that must be overcome in order to realize intermediate band devices that outperform single junction photovoltaic cells.

1.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
2.
A.
Luque
and
A.
Marti
,
Phys. Rev. Lett.
78
,
5014
(
1997
).
3.
A.
Luque
and
A.
Martí
,
Prog. Photovoltaics: Res. Appl.
9
,
73
(
2001
).
4.
A.
Martí
,
L.
Cuadra
, and
A.
Luque
,
Physica E
14
,
150
(
2002
).
5.
C. G.
Bailey
,
S.
Member
,
D. V.
Forbes
,
S. J.
Polly
,
Z. S.
Bittner
,
Y.
Dai
,
C.
Mackos
,
R. P.
Raffaelle
,
S. M.
Hubbard
,
A.
Ten
, and
I.
Gaas
, in
37th IEEE Photovoltaic Specialists Conference 2011 (PVSC)
(
2012
), Vol.
2
, p.
269
.
6.
W. M.
Reid
,
T.
Driscoll
, and
M. F.
Doty
,
J. Appl. Phys.
111
,
056102
(
2012
).
7.
O.
Rubel
,
P.
Dawson
,
S. D.
Baranovskii
,
K.
Pierz
,
P.
Thomas
, and
E. O.
Göbel
,
Phys. Status Solidi C
3
,
2397
(
2006
).
8.
E.
Antolin
,
A.
Marti
,
C. D.
Farmer
,
P. G.
Linares
,
E.
Hernandez
,
A. M.
Sanchez
,
T.
Ben
,
S. I.
Molina
,
C. R.
Stanley
, and
A.
Luque
,
J. Appl. Phys.
108
,
064513
(
2010
).
9.
Y.
Dai
,
C. G.
Baile
,
C.
Kerestesl
,
D. V.
Forbesl
, and
S. M.
Hubbardl
, in
38th IEEE Photovoltaic Specialists Conference 2012 (PVSC)
(
2011
), p.
39
.
10.
S. M.
Hubbard
,
C. D.
Cress
,
C. G.
Bailey
,
R. P.
Raffaelle
,
S. G.
Bailey
, and
D. M.
Wilt
,
Appl. Phys. Lett.
92
,
123512
(
2008
).
11.
S. M.
Hubbard
,
A.
Podell
,
C.
Mackos
,
S.
Polly
,
C. G.
Bailey
, and
D. V.
Forbes
,
Sol. Energy Mater. Sol. Cells
108
,
256
(
2013
).
12.
A.
Martí
,
E.
Antolín
,
C. R.
Stanley
,
C. D.
Farmer
,
N.
López
,
P.
Díaz
,
E.
Cánovas
,
P. G.
Linares
, and
A.
Luque
,
Phys. Rev. Lett.
97
,
247701
(
2006
).
13.
D.
Guimard
,
R.
Morihara
,
D.
Bordel
,
K.
Tanabe
,
Y.
Wakayama
,
M.
Nishioka
, and
Y.
Arakawa
,
Appl. Phys. Lett.
96
,
203507
(
2010
).
14.
Y.
Okada
,
T.
Morioka
,
K.
Yoshida
,
R.
Oshima
,
Y.
Shoji
,
T.
Inoue
, and
T.
Kita
,
J. Appl. Phys.
109
,
024301
(
2011
).
15.
D. M.
Tex
,
I.
Kamiya
, and
Y.
Kanemitsu
,
Phys. Rev. B
87
,
245305
(
2013
).
16.
Solar concentration values were estimated by comparing the number of 1.17 eV (0.8 eV) photons/m2/s incident on the sample under laser excitation to the integrated number of photons/m2/s in the portion of the AM1.5 solar spectrum that excites carriers to the confined states of the InAs QDs (out of the InAs QDs).
17.
See supplementary material at http://dx.doi.org/10.1063/1.4881181 for a more detailed explanation of sample growth parameters and sample heating experiments.

Supplementary Material

You do not currently have access to this content.