We have studied angle dependent magnetoresistance of Bi2Te3 thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

1.
L.
Fu
,
C. L.
Kane
, and
E. J.
Mele
,
Phys. Rev. Lett.
98
,
106803
(
2007
).
2.
Y.
Xia
,
D.
Qian
,
D.
Hsieh
,
L.
Wray
,
A.
Pal
,
H.
Lin
,
A.
Bansil
,
D.
Grauer
,
Y. S.
Hor
,
R. J.
Cava
, and
M. Z.
Hasan
,
Nat. Phys.
5
,
398
(
2009
).
3.
H.
Zhang
,
C.-X.
Liu
,
X.-L.
Qi
,
X.
Dai
,
Z.
Fang
, and
S.-C.
Zhang
,
Nat. Phys.
5
,
438
(
2009
).
4.
Y.-Y.
Li
,
G.
Wang
,
X.-G.
Zhu
,
M.-H.
Liu
,
C.
Ye
,
X.
Chen
,
Y.-Y.
Wang
,
K.
He
,
L.-L.
Wang
,
X.-C.
Ma
,
H.-J.
Zhang
,
X.
Dai
,
Z.
Fang
,
X.-C.
Xie
,
Y.
Liu
,
X.-L.
Qi
,
J.-F.
Jia
,
S.-C.
Zhang
, and
Q.-K.
Xue
,
Adv. Mater.
22
,
4002
(
2010
).
5.
Q.
Zhang
,
Z.
Zhang
,
Z.
Zhu
,
U.
Schwingenschlögl
, and
Y.
Cui
,
ACS Nano
6
,
2345
(
2012
).
6.
Y.
Zhao
,
C.-Z.
Chang
,
Y.
Jiang
,
A.
DaSilva
,
Y.
Sun
,
H.
Wang
,
Y.
Xing
,
Y.
Wang
,
K.
He
,
X.
Ma
,
Q.-K.
Xue
, and
J.
Wang
,
Sci. Rep.
3
,
3060
(
2013
).
7.
J. E.
Moore
,
Nat. Phys.
5
,
378
(
2009
).
9.
M. Z.
Hasan
and
C. L.
Kane
,
Rev. Mod. Phys.
82
,
3045
(
2010
).
10.
K.-H.
Jin
and
S.-H.
Jhi
,
Phys. Rev. B
87
,
075442
(
2013
).
11.
L.
Xu
,
Y.
Zhou
, and
C.-D.
Gong
,
J. Phys.: Condens. Matter
25
,
335503
(
2013
).
12.
T. P.
Kaloni
,
N.
Singh
, and
U.
Schwingenschlögl
,
Phys. Rev. B
89
,
035409
(
2014
).
13.
M.
Tahir
and
U.
Schwingenschlögl
,
Sci. Rep.
3
,
1075
(
2013
).
14.
T. P.
Kaloni
,
M.
Tahir
, and
U.
Schwingenschlögl
,
Sci. Rep.
3
,
3192
(
2013
).
15.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
,
Science
314
,
1757
(
2006
).
16.
M.
Knig
,
S.
Wiedmann
,
C.
Brne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
,
Science
318
,
766
(
2007
).
17.
H.-T.
He
,
G.
Wang
,
T.
Zhang
,
I.-K.
Sou
,
G. K. L.
Wong
,
J.-N.
Wang
,
H.-Z.
Lu
,
S.-Q.
Shen
, and
F.-C.
Zhang
,
Phys. Rev. Lett.
106
,
166805
(
2011
).
18.
J.
Chen
,
X. Y.
He
,
K. H.
Wu
,
Z. Q.
Ji
,
L.
Lu
,
J. R.
Shi
,
J. H.
Smet
, and
Y. Q.
Li
,
Phys. Rev. B
83
,
241304
(
2011
).
19.
M.
Liu
,
C.-Z.
Chang
,
Z.
Zhang
,
Y.
Zhang
,
W.
Ruan
,
K.
He
,
L.-l.
Wang
,
X.
Chen
,
J.-F.
Jia
,
S.-C.
Zhang
,
Q.-K.
Xue
,
X.
Ma
, and
Y.
Wang
,
Phys. Rev. B
83
,
165440
(
2011
).
20.
J.
Wang
,
A. M.
DaSilva
,
C.-Z.
Chang
,
K.
He
,
J. K.
Jain
,
N.
Samarth
,
X.-C.
Ma
,
Q.-K.
Xue
, and
M. H. W.
Chan
,
Phys. Rev. B
83
,
245438
(
2011
).
21.
Y.
Takagaki
,
B.
Jenichen
,
U.
Jahn
,
M.
Ramsteiner
, and
K.-J.
Friedland
,
Phys. Rev. B
85
,
115314
(
2012
).
22.
S.-P.
Chiu
and
J.-J.
Lin
,
Phys. Rev. B
87
,
035122
(
2013
).
23.
A.
Roy
,
S.
Guchhait
,
S.
Sonde
,
R.
Dey
,
T.
Pramanik
,
A.
Rai
,
H. C. P.
Movva
,
L.
Colombo
, and
S. K.
Banerjee
,
Appl. Phys. Lett.
102
,
163118
(
2013
).
24.
H.
He
,
B.
Li
,
H.
Liu
,
X.
Guo
,
Z.
Wang
,
M.
Xie
, and
J.
Wang
,
Appl. Phys. Lett.
100
,
032105
(
2012
).
25.
B. F.
Gao
,
P.
Gehring
,
M.
Burghard
, and
K.
Kern
,
Appl. Phys. Lett.
100
,
212402
(
2012
).
26.
S. X.
Zhang
,
R. D.
McDonald
,
A.
Shekhter
,
Z. X.
Bi
,
Y.
Li
,
Q. X.
Jia
, and
S. T.
Picraux
,
Appl. Phys. Lett.
101
,
202403
(
2012
).
27.
B. A.
Assaf
,
T.
Cardinal
,
P.
Wei
,
F.
Katmis
,
J. S.
Moodera
, and
D.
Heiman
,
Appl. Phys. Lett.
102
,
012102
(
2013
).
28.
A. A.
Abrikosov
,
Phys. Rev. B
58
,
2788
(
1998
).
29.
S.
Hikami
,
A. I.
Larkin
, and
Y.
Nagaoka
,
Prog. Theor. Phys.
63
,
707
(
1980
).
30.
S.
Maekawa
and
H.
Fukuyama
,
J. Phys. Soc. Jpn.
50
,
2516
(
1981
).
31.
P. A.
Lee
and
T. V.
Ramakrishnan
,
Rev. Mod. Phys.
57
,
287
(
1985
).
32.

lϕT12 indicates the 2D nature of the carriers. In thin TI film, both the surfaces are coupled with a gap opening at the Dirac point, and the otherwise bulk states become quasi-2D due to confinement in one direction4,34,39,59–61 and they become strongly coupled with the surfaces through scattering allowing the system to behave like a single phase-coherent channel.18,23,34,35,61

33.

We assume parabolic quasi-2D CB with an effective mass of 0.178 times62 the rest mass of an electron, the bottom of CB being about 0.3 eV above the Dirac point,63 and a linear 2D Dirac cone with the Fermi velocity of 4.0 × 105 m/s.45,63

34.
A. A.
Taskin
,
S.
Sasaki
,
K.
Segawa
, and
Y.
Ando
,
Phys. Rev. Lett.
109
,
066803
(
2012
).
35.
M.
Lang
,
L.
He
,
X.
Kou
,
P.
Upadhyaya
,
Y.
Fan
,
H.
Chu
,
Y.
Jiang
,
J. H.
Bardarson
,
W.
Jiang
,
E. S.
Choi
,
Y.
Wang
,
N.-C.
Yeh
,
J.
Moore
, and
K. L.
Wang
,
Nano Lett.
13
,
48
(
2013
).
36.
H. B.
Zhang
,
H. L.
Yu
,
D. H.
Bao
,
S. W.
Li
,
C. X.
Wang
, and
G. W.
Yang
,
Phys. Rev. B
86
,
075102
(
2012
).
37.
H.-Z.
Lu
,
J.
Shi
, and
S.-Q.
Shen
,
Phys. Rev. Lett.
107
,
076801
(
2011
).
38.
I.
Garate
and
L.
Glazman
,
Phys. Rev. B
86
,
035422
(
2012
).
39.
P.
Ghaemi
,
R. S. K.
Mong
, and
J. E.
Moore
,
Phys. Rev. Lett.
105
,
166603
(
2010
).
41.
S.-I.
Kobayashi
and
F.
Komori
,
Prog. Theor. Phys. Suppl.
84
,
224
(
1985
).
42.

The film thickness d<(/(4eB)2) should hold for HLN equation to be valid in 2D. Here, d = 4 nm and /(4eB)2=4.3nm for B = 9 T. So for high field 2D HLN equation is less valid, which may be a reason for very little deviation in fitting near 9 T.

43.
R. L.
Kallaher
and
J. J.
Heremans
,
Phys. Rev. B
79
,
075322
(
2009
).
44.
J.
Rammer
and
A.
Schmid
,
Phys. Rev. B
34
,
1352
(
1986
).
45.
D.-X.
Qu
,
Y. S.
Hor
,
J.
Xiong
,
R. J.
Cava
, and
N. P.
Ong
,
Science
329
,
821
(
2010
).
46.
D.
Pesin
and
A. H.
MacDonald
,
Nature Mater.
11
,
409
(
2012
).
47.
A. A.
Burkov
and
D. G.
Hawthorn
,
Phys. Rev. Lett.
105
,
066802
(
2010
).
48.

This is an upper limit on τSOZ obtained from fitting, as lowering τSOZ further is insensitive to fitting due to the η(x) function. So actual value of τSOZ could be lower than our estimate.

49.
D.
Kowal
,
M.
Ben-Chorin
, and
Z.
Ovadyahu
,
Phys. Rev. B
44
,
9080
(
1991
).
50.

Although the EEI theory of Lee-Ramakrishnan is not derived under strong SOC, we have not considered any further theory of EEI in strong SOC system for better fitting of perpendicular field MR data, as original HLN theory alone can explain it.

51.
A. J.
Millis
and
P. A.
Lee
,
Phys. Rev. B
30
,
6170
(
1984
).
52.
A.
Sahnoune
,
J. O.
Ström-Olsen
, and
H. E.
Fischer
,
Phys. Rev. B
46
,
10035
(
1992
).
53.
P. M.
Ostrovsky
,
I. V.
Gornyi
, and
A. D.
Mirlin
,
Phys. Rev. Lett.
105
,
036803
(
2010
).
54.
Y.
Lyanda-Geller
,
Phys. Rev. Lett.
80
,
4273
(
1998
).
55.
H.
Khler
and
E.
Wchner
,
Phys. Status Solidi B
67
,
665
(
1975
).
56.
H.
Khler
,
Phys. Status Solidi B
75
,
127
(
1976
).
57.

The free space permittivity is used for calculation, as the film thickness is comparable to the mean in-plane distance between electrons (order of kF1) and most of the electric field lines responsible for EEI pass through the surrounding media.64 

58.

To fit the angular dependency of the data with HLN equation, σ(B,θ=90°) data-point was replaced by σ(B=0); as the change in MR for perpendicular field is not due to WAL effect but due to the Zeeman effect, which is suppressed for θ < 80°.23 

59.
K.
Park
,
J. J.
Heremans
,
V. W.
Scarola
, and
D.
Minic
,
Phys. Rev. Lett.
105
,
186801
(
2010
).
60.
Y.
Liu
,
G.
Bian
,
T.
Miller
,
M.
Bissen
, and
T.-C.
Chiang
,
Phys. Rev. B
85
,
195442
(
2012
).
61.
H.
Steinberg
,
J.-B.
Laloë
,
V.
Fatemi
,
J. S.
Moodera
, and
P.
Jarillo-Herrero
,
Phys. Rev. B
84
,
233101
(
2011
).
62.
B. Y.
Yavorsky
,
N. F.
Hinsche
,
I.
Mertig
, and
P.
Zahn
,
Phys. Rev. B
84
,
165208
(
2011
).
63.
Y. L.
Chen
,
J. G.
Analytis
,
J.-H.
Chu
,
Z. K.
Liu
,
S.-K.
Mo
,
X. L.
Qi
,
H. J.
Zhang
,
D. H.
Lu
,
X.
Dai
,
Z.
Fang
,
S. C.
Zhang
,
I. R.
Fisher
,
Z.
Hussain
, and
Z.-X.
Shen
,
Science
325
,
178
(
2009
).
64.
D. K.
Efimkin
,
Y. E.
Lozovik
, and
A. A.
Sokolik
,
Phys. Rev. B
86
,
115436
(
2012
).
You do not currently have access to this content.