The diffusion of boron in nanocrystalline silicon carbide (nc-SiC) films with a grain size of 4–7 nm is studied using a poly-Si boron source. Diffusion is found to be much faster than in monocrystalline SiC as it takes place within the grain boundary (GB) network. Drive-in temperatures of 900–1000 °C are suitable for creating shallow boron profiles up to 100 nm deep, while 1100 °C is sufficient to flood the 200 nm thick films with boron. From the resulting plateau at 1100 °C a boron segregation coefficient of 28 between nc-SiC and the Si substrate, as well as a GB boron solubility limit of 0.2 nm−2 is determined. GB diffusion in the bulk of the films is Fickian and thermally activated with DGB(T)=(3.15.6)×107exp(5.03±0.16eV/kBT) cm2s−1. The activation energy is interpreted in terms of a trapping mechanism at dangling bonds. Higher boron concentrations are present at the nc-SiC surface and are attributed to immobilized boron.

1.
J. A.
Edmond
,
J.
Ryu
,
J. T.
Glass
, and
R. F.
Davis
,
J. Electrochem. Soc.
135
(
2
),
359
362
(
1988
).
2.
G. L.
Harris
,
Properties of Silicon Carbide
(
INSPEC
,
The Institution of Electrical Engineers, London, UK
,
1995
).
3.
L. M.
Porter
and
R. F.
Davis
,
Mater. Sci. Eng., B
34
(
2–3
),
83
105
(
1995
).
4.
M.
Eickhoff
,
H.
Moller
,
J.
Stoemenos
,
S.
Zappe
,
G.
Kroetz
, and
M.
Stutzmann
,
J. Appl. Phys.
95
(
12
),
7908
7917
(
2004
).
5.
S.
Nishino
,
J. A.
Powell
, and
H. A.
Will
,
Appl. Phys. Lett.
42
(
5
),
460
462
(
1983
).
6.
Y.
Wang
,
J.
Lin
,
C. H. A.
Huan
,
Z. C.
Feng
, and
S. J.
Chua
,
Thin Solid Films
384
,
173
176
(
2001
).
7.
K.
Schillinger
,
S.
Janz
, and
S.
Reber
,
J. Nanosci. Nanotechnol.
11
,
8108
8113
(
2011
).
8.
M.
Schnabel
,
P.
Löper
,
S.
Gutsch
,
P. R.
Wilshaw
, and
S.
Janz
,
Thin Solid Films
527
,
193
199
(
2013
).
9.
C.
Summonte
,
M.
Canino
,
M.
Allegrezza
,
M.
Bellettato
,
A.
Desalvo
,
R.
Shukla
,
S.
Milita
,
L.
Ortolani
,
L.
López-Coneza
,
S.
Estradé
,
F.
Peiró
, and
B.
Garrido
,
Mater. Sci. Eng., B
178
(
9
),
551
558
(
2013
).
10.
G.
Conibeer
,
M.
Green
,
R.
Corkish
,
Y.
Cho
,
E.-C.
Cho
,
C.-W.
Jiang
,
T.
Fangsuwannarak
,
E.
Pink
,
Y.
Huang
,
T.
Puzzer
,
T.
Trupke
,
B.
Richards
,
A.
Shalav
, and
K. L.
Lin
,
Thin Solid Films
511–512
,
654
662
(
2006
).
11.
P.
Löper
,
M.
Canino
,
D.
Qazzazie
,
M.
Schnabel
,
M.
Allegrezza
,
C.
Summonte
,
S. W.
Glunz
,
S.
Janz
, and
M.
Zacharias
,
Appl. Phys. Lett.
102
(
3
),
033507
(
2013
).
12.
M.
Schnabel
,
P.
Löper
,
M.
Canino
,
S. A.
Dyakov
,
M.
Allegrezza
,
M.
Bellettato
,
J.
López-Vidrier
,
S.
Hernández
,
C.
Summonte
,
B.
Garrido
,
P. R.
Wilshaw
, and
S.
Janz
,
Solid State Phenom.
205–206
,
480
485
(
2013
).
13.
C.
Summonte
,
A.
Desalvo
,
M.
Canino
,
M.
Allegrezza
,
M.
Rosa
,
M.
Ferri
,
E.
Centurioni
,
A.
Terrasi
, and
S.
Mirabella
, presented at the Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain,
2010
. (unpublished).
14.
S.
Janz
,
M.
Schnabel
,
P.
Löper
,
C.
Summonte
,
M.
Canino
,
J.
López-Vidrier
,
S.
Hernández
,
B.
Garrido
, and
S. W.
Glunz
, presented at the Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France,
2013
.
15.
Y.
Kurokawa
,
S.
Tomita
,
S.
Miyajima
,
A.
Yamada
, and
M.
Konagai
, presented at the Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA,
2008
.
16.
P.
Löper
,
M.
Canino
,
M.
Schnabel
,
C.
Summonte
,
S.
Janz
, and
M.
Zacharias
,
in High-Efficiency Solar Cells
, edited by
X.
Wang
and
Z. M.
Wang
(
Springer International Publishing
,
2014
), Vol.
190
, pp.
165
194
.
17.
D.
Song
,
E.-C.
Cho
,
G.
Conibeer
,
C.
Flynn
,
Y.
Huang
, and
M. A.
Green
,
Sol. Energy Mater. Sol. Cells
92
,
474
481
(
2008
).
18.
U.
Coscia
,
G.
Ambrosone
, and
D. K.
Basa
,
J. Appl. Phys.
103
,
063507
(
2008
).
19.
Y.
Rui
,
S.
Li
,
C.
Song
,
X.
Jiang
,
W.
Li
,
K.
Chen
,
Q.
Wang
, and
Y.
Zuo
,
J. Appl. Phys.
110
,
064322
(
2011
).
20.
G.
Wen
,
X.
Zeng
,
X.
Wen
, and
W.
Liao
,
J. Appl. Phys.
115
(
16
),
143106
(
2014
).
21.
C. M.
Hessel
,
D.
Reid
,
M. G.
Panthani
,
M. R.
Rasch
,
B. W.
Goodfellow
,
J.
Wei
,
H.
Fujii
,
V.
Akhavan
, and
B. A.
Korgel
,
Chem. Mater.
24
(
2
),
393
401
(
2012
).
22.
M. L.
Mastronardi
,
F.
Maier-Flaig
,
D.
Faulkner
,
E. J.
Henderson
,
C.
Kübel
,
U.
Lemmer
, and
G. A.
Ozin
,
Nano Lett.
12
(
1
),
337
342
(
2012
).
23.
S.
Godefroo
,
M.
Hayne
,
M.
Jivanescu
,
A.
Stesmans
,
M.
Zacharias
,
O. I.
Lebedev
,
G.
Van Tendeloo
, and
V. V.
Moshchalkov
,
Nature Nanotechnol.
3
,
174
178
(
2008
).
24.
L.
Pavesi
,
L.
Dal Negro
,
C.
Mazzoleni
,
G.
Franzo
, and
F.
Priolo
,
Nature
408
(
6811
),
440
444
(
2000
).
25.
D.
Timmerman
,
J.
Valenta
,
K.
Dohnalová
,
W. D. A. M.
de Boer
, and
T.
Gregorkiewicz
,
Nature Nanotechnol.
6
,
710
713
(
2011
).
26.
R. J.
Walters
,
J.
Kalkman
,
A.
Polman
,
H. A.
Atwater
, and
M. J. A.
de Dood
,
Phys. Rev. B
73
(
13
),
132302
(
2006
).
27.
M.
Kořínek
,
M.
Schnabel
,
M.
Canino
,
M.
Kozák
,
F.
Trojánek
,
J.
Salava
,
P.
Löper
,
S.
Janz
,
C.
Summonte
, and
P.
Malý
,
J. Appl. Phys.
114
(
7
),
073101
(
2013
).
28.
F.
Demichelis
,
C. F.
Pirri
, and
E.
Tresso
,
J. Appl. Phys.
72
(
4
),
1327
1333
(
1992
).
29.
S.
Miyajima
,
A.
Yamada
, and
M.
Konagai
,
Jpn. J Appl Phys, Part 1
46
(
4A
),
1415
1426
(
2007
).
30.
H.
Bracht
,
N. A.
Stolwijk
,
M.
Laube
, and
G.
Pensl
,
Appl. Phys. Lett.
77
(
20
),
3188
3190
(
2000
).
31.
M. V.
Rao
,
J. A.
Gardner
,
P. H.
Chi
,
O. W.
Holland
,
G.
Kelner
,
J.
Kretchmer
, and
M.
Ghezzo
,
J. Appl. Phys.
81
(
10
),
6635
6641
(
1997
).
32.
S.
Seshadri
,
G. W.
Eldridge
, and
A. K.
Agarwal
,
Appl. Phys. Lett.
72
(
16
),
2026
2028
(
1998
).
33.
M.
Laube
,
G.
Pensl
, and
H.
Itoh
,
Appl. Phys. Lett.
74
(
16
),
2292
2294
(
1999
).
34.
K.
Rüschenschmidt
,
H.
Bracht
,
N. A.
Stolwijk
,
M.
Laube
,
G.
Pensl
, and
G. R.
Brandes
,
J. Appl. Phys.
96
(
3
),
1458
1463
(
2004
).
35.
J.
Bernholc
,
S. A.
Kajihara
,
C.
Wang
,
A.
Antonelli
, and
R. F.
Davis
,
Mater. Sci. Eng., B
11
(
1–4),
265
272
(
1992
).
36.
M.
Bockstedte
,
A.
Mattausch
, and
O.
Pankratov
,
Phys. Rev. B
68
(
20
),
205201
(
2003
).
37.
M.
Bockstedte
,
A.
Mattausch
, and
O.
Pankratov
,
Phys. Rev. B
70
(
11
),
115203
(
2004
).
38.
H. H.
Woodbury
and
G. W.
Ludwig
,
Phys. Rev.
124
(
4
),
1083
1089
(
1961
).
39.
M. H.
Hon
and
R. F.
Davis
,
J. Mater. Sci.
14
(
10
),
2411
2421
(
1979
).
40.
M.
Canino
,
C.
Summonte
,
M.
Allegrezza
,
R.
Shukla
,
I. P.
Jain
,
M.
Bellettato
,
A.
Desalvo
,
F.
Mancarella
,
M.
Sanmartin
,
A.
Terrasi
,
P.
Löper
,
M.
Schnabel
, and
S.
Janz
,
Mater. Sci. Eng., B
178
(
9
),
623
629
(
2013
).
41.
G. K.
Williamson
and
W. H.
Hall
,
Acta Metall.
1
(
1
),
22
31
(
1953
).
42.
M.
Dkaki
,
L.
Calcagno
,
A. M.
Makthari
, and
V.
Raineri
,
Mater. Sci. Semicond. Process.
4
(
1–3
),
201
204
(
2001
).
43.
P.
Pichler
,
Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon
(
Springer Verlag
,
2004
).
44.
J. C.
Fisher
,
J. Appl. Phys.
22
(
1
),
74
77
(
1951
).
45.
T.
Suzuoka
,
Trans. Jpn. Inst. Met.
2
(
1
),
25
33
(
1961
).
46.
J.
Crank
,
The Mathematics of Diffusion
(
Oxford University Press
,
1979
).
47.
N.
Ishii
,
M.
Kumeda
, and
T.
Shimizu
,
Solid State Commun.
41
(
2
),
143
146
(
1982
).
48.
T.
Shimizu
,
M.
Kumeda
, and
Y.
Kiriyama
,
Solid State Commun.
37
(
9
),
699
703
(
1981
).
49.
S.
Yamada
,
Y.
Kurokawa
,
S.
Miyajima
, and
M.
Konagai
,
Nanoscale Res. Lett.
9
(
1
),
72
(
2014
).
50.
K.
Ding
,
U.
Aeberhard
,
W.
Beyer
,
O.
Astakhov
,
F.
Köhler
,
U.
Breuer
,
F.
Finger
,
R.
Carius
, and
U.
Rau
,
Phys. Status Solidi A
209
(10),
1960
(
2012
).
51.
E.
Centurioni
,
Appl. Opt.
44
(
35
),
7532
7539
(
2005
).
52.
H.
Gu
,
Y.
Shinoda
, and
F.
Wakai
,
J. Am. Ceram. Soc.
82
(
2
),
469
472
(
1999
).
You do not currently have access to this content.