Selective hysteretic heating of multiple collocated types of single domain magnetic nanoparticles (SDMNPs) by alternating magnetic fields (AMFs) may offer a useful tool for biomedical applications. The possibility of “magnetothermal multiplexing” has not yet been realized, in part due to prevalent use of linear response theory to model SDMNP heating in AMFs. Dynamic hysteresis modeling suggests that specific driving conditions play an underappreciated role in determining optimal material selection strategies for high heat dissipation. Motivated by this observation, magnetothermal multiplexing is theoretically predicted and empirically demonstrated by selecting SDMNPs with properties that suggest optimal hysteretic heat dissipation at dissimilar AMF driving conditions. This form of multiplexing could effectively offer multiple channels for minimally invasive biological signaling applications.

1.
Q. A.
Pankhurst
,
N. T. K.
Thanh
,
S. K.
Jones
, and
J.
Dobson
,
J. Phys. D
42
(
22
),
224001
(
2009
).
2.
R.
Hergt
,
S.
Dutz
,
R.
Müller
, and
M.
Zeisberger
,
J. Phys: Condens. Matter
18
(
38
),
S2919
2934
(
2006
).
3.
H.
Huang
,
S.
Delikanli
,
H.
Zeng
,
D. M.
Ferkey
, and
A.
Pralle
,
Nat. Nanotechnol.
5
(
8
),
602
606
(
2010
).
4.
S. A.
Stanley
,
J. E.
Gagner
,
S.
Damanpour
,
M.
Yoshida
,
J. S.
Dordick
, and
J. M.
Friedman
,
Science
336
(
6081
),
604
608
(
2012
).
5.
A.
Riedinger
,
P.
Guardia
,
A.
Curcio
,
M. A.
Garcia
,
R.
Cingolani
,
L.
Manna
, and
T.
Pellegrino
,
Nano Lett.
13
(
6
),
2399
2406
(
2013
).
6.
L.
Neél
,
Ann. Geophys.
5
(
2
),
99
136
(
1949
).
7.
M. P.
Sharrock
,
IEEE Trans. Magn.
26
(
1
),
193
197
(
1990
).
8.
R. E.
Rosensweig
,
J. Magn. Magn. Mater.
252
,
370
374
(
2002
).
9.
B.
Mehdaoui
,
A.
Meffre
,
J.
Carrey
,
S.
Lachaize
,
L.-M.
Lacroix
,
M.
Gougeon
,
B.
Chaudret
, and
M.
Respaud
,
Adv. Funct. Mater.
21
(
23
),
4573
4581
(
2011
).
10.
E.
Garaio
,
J. M.
Collantes
,
J. A.
Garcia
,
F.
Plazaola
,
S.
Mornet
,
F.
Couillaud
, and
O.
Sandre
, “A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia,”
J. Magn. Magn. Mater
(in press).
11.
R.
Hergt
,
S.
Dutz
, and
M.
Zeisberger
,
Nanotechnology
21
(
1
),
015706
(
2010
).
12.
J.
Carrey
,
B.
Mehdaoui
, and
M.
Respaud
,
J. Appl. Phys.
109
(
8
),
083921
(
2011
).
13.
H.
Mamiya
and
B.
Jeyadevan
,
Sci. Rep.
1
,
157
(
2011
).
14.
N. A.
Usov
,
J. Appl. Phys.
107
(
12
),
123909
(
2010
).
15.
G. T.
Landi
and
A. D.
Santos
,
J. Appl. Phys.
111
(
7
),
07D121
(
2012
).
16.
N. A.
Usov
and
J. M.
Barandiarán
,
J. Appl. Phys.
112
(
5
),
053915
(
2012
).
17.
E. C.
Stoner
and
E. P.
Wohlfarth
,
Philos. Trans. R. Soc. London, Ser. A
240
(
826
),
599
642
(
1948
).
18.
S. H.
Noh
,
W.
Na
,
J. T.
Jang
,
J. H.
Lee
,
E. J.
Lee
,
S. H.
Moon
,
Y.
Lim
,
J. S.
Shin
, and
J.
Cheon
,
Nano Lett.
12
(
7
),
3716
3721
(
2012
).
19.
R.
Hergt
and
S.
Dutz
,
J. Magn. Magn. Mater.
311
(
1
),
187
192
(
2007
).
20.
W. J.
Atkinson
,
I. A.
Brezovich
, and
D. P.
Chakraborty
,
IEEE Trans. Biomed. Eng.
BME-31
(
1
),
70
75
(
1984
).
21.
P. E.
Jönsson
and
J. L.
García-Palacios
,
Phys. Rev. B
64
(
17
),
174416
(
2001
).
22.
R.
Chen
,
M. G.
Christiansen
, and
P.
Anikeeva
,
ACS Nano
7
(
10
),
8990
9000
(
2013
).
23.
J.-H.
Lee
,
J.-T.
Jang
,
J.-S.
Choi
,
S. H.
Moon
,
S.-H.
Noh
,
J.-W.
Kim
,
J.-G.
Kim
,
I.-S.
Kim
,
K. I.
Park
, and
J.
Cheon
,
Nat. Nanotechnol.
6
(
7
),
418
422
(
2011
).
You do not currently have access to this content.