We present parallel parametric amplification of coherently excited, propagating spin waves in a microstructured magnonic Ni81Fe19 waveguide. Amplification is achieved by the pumping field generated by a microwave current flowing through a Cu micro-stripline underneath the waveguide. By employing microfocussed Brillouin light scattering spectroscopy, we investigate the spatial decay of the propagating spin waves and their amplification by means of parallel pumping. We analyze the dependence of the intensity of the amplified spin waves on the spin-wave excitation power, pumping power, and pumping duration, revealing the most efficient working point for a noise-free amplification. This paves the way for a frequency selective amplification of spin waves in microstructured magnonic circuits.

1.
B.
Lenk
,
H.
Ulrichs
,
F.
Garbs
, and
M.
Münzenberg
,
Phys. Rep.
507
,
107
(
2011
).
2.
A. A.
Serga
,
A. V.
Chumak
, and
B.
Hillebrands
,
J. Phys. D: Appl. Phys.
43
,
264002
(
2010
).
3.
S.
Neusser
and
D.
Grundler
,
Adv. Mater.
21
,
2927
2932
(
2009
).
4.
A. V.
Chumak
,
A. A.
Serga
,
M. B.
Jungfleisch
,
R.
Neb
,
D. A.
Bozhko
,
V. S.
Tiberkevich
, and
B.
Hillebrands
,
Appl. Phys. Lett.
100
,
082405
(
2012
).
5.
P.
Pirro
,
T.
Brächer
,
K.
Vogt
,
B.
Obry
,
H.
Schultheiss
,
B.
Leven
, and
B.
Hillebrands
,
Phys. Status Solidi B
248
(
10
),
2404
(
2011
).
6.
A.
Khitun
,
M.
Bao
, and
K. L.
Wang
,
J. Phys. D: Appl. Phys.
43
,
264005
(
2010
).
7.
T.
Schneider
,
A. A.
Serga
,
B.
Leven
,
B.
Hillebrands
,
R. L.
Stamps
, and
M. P.
Kostylev
,
Appl. Phys. Lett.
92
,
022505
(
2008
).
8.
M.
Madami
,
S.
Bonetti
,
G.
Consolo
,
S.
Tacchi
,
G.
Carlotti
,
G.
Gubbiotti
,
F. B.
Mancoff
,
M. A.
Yar
, and
J.
Akerman
,
Nat. Nanotechnol.
6
,
635
638
(
2011
).
9.
V. E.
Demidov
,
S.
Urazhdin
,
H.
Ulrichs
,
V.
Tiberkevich
,
A. N.
Slavin
,
D.
Baither
,
G.
Schmitz
, and
S. O.
Demokritov
,
Nature Mater.
11
,
1028
(
2012
).
10.
Z.
Wang
,
Y.
Sun
,
M.
Wu
,
V.
Tiberkevich
, and
A. N.
Slavin
,
Phys. Rev. Lett.
107
,
146602
(
2011
).
11.
E.
Schlömann
,
J. J.
Green
, and
U.
Milano
,
J. Appl. Phys.
31
,
386S
(
1960
).
12.
A. G.
Gurevich
and
G. A.
Melkov
,
Magnetization Oscillations and Waves
(
CRC
,
New York
,
1996
).
13.
A. A.
Serga
,
C. W.
Sandweg
,
V. I.
Vasyuchka
,
M. B.
Jungfleisch
,
B.
Hillebrands
,
A.
Kreisel
,
P.
Kopietz
, and
M. P.
Kostylev
,
Phys. Rev. B
86
,
134403
(
2012
).
14.
V. E.
Zakharov
,
V. S.
L'vov
, and
S. S.
Starobinets
,
Sov. Phys. JETP
32
,
656
(
1971
), http://www.jetp.ac.ru/cgi-bin/e/index/e/32/4/p656?a=list.
15.
S.
Schäfer
,
A. V.
Chumak
,
A. A.
Serga
,
G. A.
Melkov
, and
B.
Hillebrands
,
Appl. Phys. Lett.
92
,
162514
(
2008
).
16.
T.
Brächer
,
P.
Pirro
,
B.
Obry
,
B.
Leven
,
A. A.
Serga
, and
B.
Hillebrands
,
Appl. Phys. Lett.
99
,
162501
(
2011
).
17.
V. E.
Demidov
,
S. O.
Demokritov
,
B.
Hillebrands
,
M.
Laufenberg
, and
P. P.
Freitas
,
Appl. Phys. Lett.
85
,
2866
(
2004
).
18.
V. E.
Demidov
,
M. P.
Kostylev
,
K.
Rott
,
P.
Krzysteczko
,
G.
Reiss
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
95
,
112509
(
2009
).
19.
This field is in the vicinity of the field of the most efficient generation for the mode n = 1 with ky0rad/μm at μ0Hext = 36 mT. For a saturation magnetization of Ms = 800 kA/m and an exchange constant of A = 16 pJ/m, the wavelength λ = 17 μm, as well as, a group velocity vg = 6.1 μm/ns follow from the dispersion relation for spin waves in thin films for an effective field of μ0Heff = 29 mT and an effective waveguide width of weff = 3 μm.
20.
B. A.
Kalinikos
and
A. N.
Slavin
,
J. Phys. C
19
,
7013
(
1986
).
21.
K.
Yu. Guslienko
,
S. O.
Demokritov
,
B.
Hillebrands
, and
A. N.
Slavin
,
Phys. Rev. B
66
,
132402
(
2002
).
22.
T.
Brächer
,
P.
Pirro
,
F.
Heussner
,
A. A.
Serga
, and
B.
Hillebrands
,
Appl. Phys. Lett.
104
,
092418
(
2014
).
23.
C. W.
Sandweg
,
Y.
Kajiwara
,
A. V.
Chumak
,
A. A.
Serga
,
V. I.
Vasyuchka
,
M. B.
Jungfleisch
,
E.
Saitoh
, and
B.
Hillebrands
,
Phys. Rev. Lett.
106
,
216601
(
2011
).
24.
A. V.
Chumak
,
V. I.
Vasyuchka
,
A. A.
Serga
,
M. P.
Kostylev
,
V. S.
Tiberkevich
, and
B.
Hillebrands
,
Phys. Rev. Lett.
108
,
257207
(
2012
).
25.
A. A.
Serga
,
S. O.
Demokritov
,
B.
Hillebrands
,
S.-G.
Min
, and
A. N.
Slavin
,
J. Appl. Phys.
93
,
8585
(
2003
).
26.
K.
Vogt
,
H.
Schultheiss
,
S. J.
Hermsdoerfer
,
P.
Pirro
,
A. A.
Serga
, and
B.
Hillebrands
,
Appl. Phys. Lett.
95
,
182508
(
2009
).
27.
It should be noted that the parametric instability threshold is defined for infinitely long pumping pulses. In Ni81Fe19, pulses of τ=1μs are sufficiently long to be close to this limit. However, if the pulse duration is shortened, higher powers are needed to amplify the thermal spin waves to a level that can be detected with BLS within the duration of the pumping pulse.
28.
D. D.
Stancil
and
A.
Prabhakar
,
Spin Waves—Theory and Applications
(
Springer
,
New York-Berlin-Heidelberg
,
2009
).
29.
G. A.
Melkov
,
A. A.
Serga
,
A. N.
Slavin
,
V. S.
Tiberkevich
,
A. N.
Oleinik
, and
A. V.
Bagada
,
J. Exp. Theor. Phys.
89
,
1189
(
1999
).
30.
The parametrically generated spin-wave intensity at y = 21 μm in the absence of a direct excitation has been recorded in an additional measurement which is not presented here.
You do not currently have access to this content.