In two-dimensional monolayer MoS2, excitons dominate the absorption and emission properties. However, the low electroluminescent efficiency and signal-to-noise ratio limit our understanding of the excitonic behavior of electroluminescence. Here, we study the microscopic origin of the electroluminescence from a diode of monolayer MoS2 fabricated on a heavily p-type doped silicon substrate. Direct and bound-exciton related recombination processes are identified from the electroluminescence. At a high electron-hole pair injection rate, Auger recombination of the exciton-exciton annihilation of the bound exciton emission is observed at room temperature. Moreover, the efficient electrical injection demonstrated here allows for the observation of a higher energy exciton peak of 2.255 eV in the monolayer MoS2 diode, attributed to the excited exciton state of a direct-exciton transition.

1.
D.
Xiao
,
G.
Liu
,
W.
Feng
,
X.
Xu
, and
W.
Yao
,
Phys. Rev. Lett.
108
,
196802
(
2012
).
2.
A.
Ramasubramaniam
,
Phys. Rev. B
86
,
115409
(
2012
).
3.
J.
Feng
,
X.
Qian
,
C.
Huang
, and
J.
Li
,
Nat. Photon.
6
,
866
872
(
2012
).
4.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
,
1271
1275
(
2010
).
5.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
6.
T.
Cheiwchanchamnangij
and
W. R. L.
Lambrecht
,
Phys. Rev. B
85
,
205302
(
2012
).
7.
T.
Cao
,
G.
Wang
,
W.
Han
,
H.
Ye
,
C.
Zhu
,
J.
Shi
,
Q.
Niu
,
P.
Tan
,
E.
Wang
,
B.
Liu
, and
J.
Feng
,
Nat. Commun.
3
,
1
5
(
2012
).
8.
H.
Zeng
,
J.
Dai
,
W.
Yao
,
D.
Xiao
, and
X.
Cui
,
Nat. Nanotechnol.
7
,
490
493
(
2012
).
9.
K. F.
Mak
,
K.
He
,
J.
Shan
, and
T. F.
Heinz
,
Nat. Nanotechnol.
7
,
494
498
(
2012
).
10.
K. F.
Mak
,
K.
He
,
C.
Lee
,
G. H.
Lee
,
J.
Hone
,
T. F.
Heinz
, and
J.
Shan
,
Nature Mater.
12
,
207
211
(
2013
).
11.
H.
Shi
,
R.
Yan
,
S.
Bertolazzi
,
J.
Brivio
,
B.
Gao
,
A.
Kis
,
D.
Jena
,
H. G.
Xing
, and
L.
Huang
,
ACS Nano
7
,
1072
1080
(
2013
).
12.
T.
Korn
,
S.
Heydrich
,
M.
Hirmer
,
J.
Schmutzler
, and
C.
Schüller
,
Appl. Phys. Lett.
99
,
102109
(
2011
).
13.
R. S.
Sundaram
,
M.
Engel
,
A.
Lombardo
,
R.
Krupke
,
A. C.
Ferrari
,
Ph.
Avouris
, and
M.
Steiner
,
Nano Lett.
13
(
4
),
1416
1421
(
2013
).
14.
S.
Das
,
H.
Chen
,
A. V.
Penumatcha
, and
J.
Appenzeller
,
Nano Lett.
13
,
100
105
(
2013
).
15.
T.
Dufaux
,
M.
Burghard
, and
K.
Kern
,
Nano Lett.
12
,
2705
2709
(
2012
).
16.
T.
Muller
,
M.
Kinoshita
,
M.
Steiner
,
V.
Perebeinos
,
A. A.
Bol
,
D. B.
Farmer
, and
P.
Avouris
,
Nat. Nanotechnol.
5
,
27
31
(
2010
).
17.
Y.
Ma
,
L.
Valkunas
,
S. L.
Dexheimer
,
S. M.
Bachilo
, and
G. R.
Fleming
,
Phys. Rev. Lett.
94
,
157402
(
2005
).
18.
F.
Wang
,
Y.
Wu
,
M. S.
Hybertsen
, and
T. F.
Heinz
,
Phys. Rev. B
73
,
245424
(
2006
).
19.
F.
Wang
,
G.
Dukovic
,
E.
Knoesel
,
L. E.
Brus
, and
T. F.
Heinz
,
Phys. Rev. B
70
,
241403
R
(
2004
).
20.
A.
Hagen
,
M.
Steiner
,
M. B.
Raschke
,
C.
Lienau
,
T.
Hertel
,
H.
Qian
,
A. J.
Meixner
, and
A.
Hartschuh
,
Phys. Rev. Lett.
95
,
197401
(
2005
).
21.
A.
Högele
,
C.
Galland
,
M.
Winger
, and
A.
Imamoğlu
,
Phys. Rev. Lett.
100
,
217401
(
2008
).
22.
H.
Komsa
and
A. V.
Krasheninnikov
,
Phys. Rev. B
86
,
241201
R
(
2012
).
You do not currently have access to this content.