We present the fabrication of highly P-doped single crystal silicon electrodes on a silicon probe through complementary metal-oxide-semiconductor (CMOS)-compatible processes. The electrode with diameter of 50 μm and a separation of 200 μm is designed for recording/stimulating purposes. Electrochemical impedance spectroscopy indicates that the interfacial impedance of silicon electrodes at 1 KHz is 2.5 ± 0.4 MΩ, which is equivalent to the result reported from the gold (Au) electrode. To further enhance the charge storage capacity, composites of multi-wall carbon nanotubes (MWCNTs) and Au nanoparticles are electroplated onto the highly P-doped silicon electrode after surface roughness treatments. With optimized electroplating processes, MWCNTs and Au nanoparticles are selectively coated onto the electrode site with only a minimum enlargement in physical diameter of electrode (<10%). However, the typical impedance is reduced to 21 ± 3 kΩ. Such improvement can be explained by a boost in double-layer capacitance (Cdl) and the reduction in faradic resistances. The measurement of cyclic voltammetry (CV) shows that the cathodal charge storage capacity is up to 35 mC cm−2, which proves the superior performance of composite coatings on silicon electrodes and validates the functionality of reported CMOS-compatible silicon probe.

1.
D. A.
Robinson
,
Proc. IEEE
56
,
1065
(
1968
).
2.
P. J.
Rousche
and
R. A.
Normann
,
J. Neurosci. Methods
82
,
1
(
1998
).
3.
K. D.
Wise
,
A. M.
Sodagar
,
Y.
Yao
,
M. N.
Gulari
,
G. E.
Perlin
, and
K.
Najafi
,
Proc. IEEE
96
(
7
),
1184
(
2008
).
4.
K.
Seidl
,
S.
Herwik
,
T.
Torfs
,
H. P.
Neves
,
O.
Paul
, and
P.
Ruther
,
IEEE J. Microelectromech. Syst.
20
(
6
),
1439
(
2011
).
5.
S.
Spieth
,
O.
Brett
,
K.
Seidl
,
A. A. A.
Aarts
,
M. A.
Erismis
,
S.
Herwik
,
F.
Trenkle
,
S.
Tatzner
,
J.
Auber
,
M.
Daub
 et al,
J. Micromech. Microeng.
21
,
125001
(
2011
).
6.
K.
Kwon
,
B.
Sirowatka
,
A.
Weber
, and
W.
Li
,
IEEE Trans. Biomed. Circuits Syst.
7
(
5
),
593
(
2013
).
7.
Y.-T.
Lee
,
C.-W.
Lin
,
C.-M.
Lin
,
S.-R.
Yeh
,
Y.-C.
Chang
, and
W.
Fang
,
J. Micromech. Microeng.
20
,
025014
(
2010
).
8.
A. O.
Fung
,
C.
Tsiokos
,
O.
Paydar
,
L. H.
Chen
,
S.
Jin
,
Y.
Wang
, and
J. W.
Judy
,
Nano Lett.
10
,
4321
(
2010
).
10.
S. F.
Cogan
,
A. A.
Guzelian
,
W. F.
Agnew
,
T. G. H.
Yuen
, and
D. B.
McCreery
,
J. Neurosci. Methods
137
,
141
(
2004
).
11.
K.
Wang
,
H. A.
Fishman
,
H.
Dai
, and
J. S.
Harris
,
Nano Lett.
6
(
9
),
2043
(
2006
).
12.
G.
Cellot
,
E.
Cilla
,
S.
Cipollone
,
V.
Rancic
,
A.
Sucapane
,
S.
Giordan
,
L.
Gambazzi
,
H.
Markram
,
M.
Grandolfo
,
D.
Scaini
 et al,
Nat. Nanotechnol.
4
,
126
(
2009
).
13.
H. H.
Zhou
,
X.
Cheng
,
L.
Rao
,
T.
Li
, and
Y. Y.
Duan
,
Acta Biomater.
9
,
6439
(
2013
).
14.
S.
Chen
,
W.
Pei
,
Q.
Gui
,
R.
Tang
,
Y.
Chen
,
S.
Zhao
,
H.
Wang
, and
H.
Chen
,
Sens. Actuators, A
193
,
141
(
2013
).
15.
H.
Zhang
,
J.
Shih
,
J.
Zhu
, and
N. A.
Kotov
,
Nano Lett.
12
,
3391
(
2012
).
16.
R.
Saha
,
N.
Jackson
,
C.
Patel
, and
J.
Muthuswamy
,
IEEE Trans. Neural Syst. Rehabil. Eng.
18
(
5
),
489
(
2010
).
17.
E. W.
keefer
,
B. R.
Botterman
,
M. I.
Romero
,
A. F.
Rossi
, and
G. W.
Gross
,
Nat. Nanotechnol.
3
,
434
(
2008
).
18.
W. M.
Tsang
,
A. L.
Stone
,
D.
Otten
,
Z. N.
Aldworth
,
T. L.
Daniel
,
J. G.
Hildebrand
,
R. B.
Levine
, and
J.
Voldman
,
J. Neurosci. Methods
204
,
355
(
2012
).
19.
W.
Lu
,
L.
Qu
,
K.
Henry
, and
L.
Dai
,
J. Power Sources
189
(
2
),
1270
(
2009
).
20.
X. F.
Wei
and
W. M.
Grill
,
J. Neural Eng.
6
,
046008
(
2009
).
You do not currently have access to this content.