We investigate the effects of humidity on the vibrations of carbon nanotubes (CNTs) using two types of CNT cantilevers: open-ended and close-ended CNT cantilevers. As the humidity increases, the resonant frequency of the open-ended CNT cantilever decreases due to the adsorption of water molecules onto the CNT tip, whereas that of the close-ended CNT cantilever increases probably due to the change in the viscosity of the air surrounding the CNT cantilever, which is negatively correlated with the humidity of air. Our findings suggest that a close-ended CNT cantilever is more suitable for a quick-response and ultrasensitive hygrometer because it continuously reads the viscosity change of moist air in the vicinity of the CNT.

1.
P.
Poncharal
,
Z. L.
Wang
,
D.
Ugarte
, and
W. A.
de Heer
,
Science
283
,
1513
(
1999
).
2.
A.
Nagataki
,
T.
Kagota
,
T.
Arie
, and
S.
Akita
,
Jpn. J. Appl. Phys.
52
,
04CN06
(
2013
).
3.
A. Y.
Joshi
,
S. P.
Harsha
, and
S. C.
Sharma
,
Physica E
42
,
2115
(
2010
).
4.
R.
Chowdhury
,
S.
Adhikari
, and
J.
Mitchell
,
Physica E
42
,
104
(
2009
).
5.
S.
Fukami
,
T.
Arie
, and
S.
Akita
,
Jpn. J. Appl. Phys.
48
,
06FG04
(
2009
).
6.
S.
Fukami
,
T.
Arie
, and
S.
Akita
,
Jpn. J. Appl. Phys.
49
,
06GK02
(
2010
).
7.
S.
Sawano
,
T.
Arie
, and
S.
Akita
,
Nano Lett.
10
,
3395
(
2010
).
8.
M.
Nishio
,
S.
Sawaya
,
S.
Akita
, and
Y.
Nakayama
,
Appl. Phys. Lett.
86
,
133111
(
2005
).
9.
S.
Sawaya
,
S.
Akita
, and
Y.
Nakayama
,
Appl. Phys. Lett.
89
,
193115
(
2006
).
10.
N.
Matsunaga
,
T.
Arie
, and
S.
Akita
,
Appl. Phys. Express
5
,
065101
(
2012
).
11.
T.
Arie
,
S.
Sawano
, and
S.
Akita
,
AIP Adv.
2
,
012144
(
2012
).
12.
K.
Hata
,
D. N.
Futaba
,
K.
Mizuno
,
T.
Namai
,
M.
Yumura
, and
S.
Iijima
,
Science
306
,
1362
(
2004
).
13.
S.
Chatzandroulis
,
A.
Tserepi
,
D.
Goustouridis
,
P.
Normand
, and
D.
Tsoukalas
,
Microelectr. Eng.
61–62
,
955
(
2002
).
14.
C.-Y.
Lee
and
G.-B.
Lee
,
J. Micromech. Microeng.
13
,
620
(
2003
).
15.
S. -H. S.
Lim
,
D.
Raorane
,
S.
Satyanarayana
, and
A.
Majumdar
,
Sens. Actuators B, Chem.
119
,
466
(
2006
).
16.
T.
Thundat
,
G. Y.
Chen
,
R. J.
Warmack
,
D. P.
Allison
, and
E. A.
Wachter
,
Anal. Chem.
67
,
519
(
1995
).
17.
S.
Sawaya
,
S.
Akita
, and
Y.
Nakayama
,
Nanotechnology
18
,
035702
(
2007
).
18.
A.
Alexiadis
and
S.
Kassinos
,
Chem. Rev.
108
,
5014
(
2008
).
19.
J. A.
Thomas
and
A. J. H.
McGaughey
,
J. Chem. Phys.
128
,
084715
(
2008
).
20.
B. M.
Kim
,
S.
Sinha
, and
H. H.
Bau
,
Nano Lett.
4
,
2203
(
2004
).
21.
J. H.
Arnold
,
J. Chem. Phys.
1
,
170
(
1933
).
22.
C. R.
Wilke
,
J. Chem. Phys.
18
,
517
(
1950
).
23.
R. B.
Bhiladvala
and
Z. J.
Wang
,
Phys. Rev. E
69
,
036307
(
2004
).
24.
M. J.
Martin
and
B. H.
Houston
,
Appl. Phys. Lett.
91
,
103116
(
2007
).
25.
J. E.
Sader
,
J. Appl. Phys.
84
,
64
(
1998
).
26.
C. A.
Van Eysden
and
J. E.
Sader
,
J. Appl. Phys.
101
,
044908
(
2007
).
You do not currently have access to this content.