We have investigated random telegraph noise (RTN) observed in individual metallic carbon nanotubes (CNTs). Mean lifetimes in high- and low-current states, τhigh and τlow, have been studied as a function of bias-voltage and gate-voltage as well as temperature. By analyzing the statistics and features of the RTN, we suggest that this noise is due to the random transition of defects between two metastable states, activated by inelastic scattering with conduction electrons. Our results indicate an important role of defect motions in the 1/f noise in CNTs.

1.
For an extensive review, see
Sh.
Kogan
,
Electronic Noise and Fluctuations in Solids
(
Cambridge University Press
,
Cambridge
,
1996
), Chap. 8;
M. J.
Kirton
and
M. J.
Uren
,
Adv. Phys.
38
,
367
(
1989
).
2.
K. S.
Ralls
,
W. J.
Skocpol
,
L. D.
Jackel
,
R. E.
Howard
,
L. A.
Fetter
,
R. W.
Epworth
, and
D. M.
Tennant
,
Phys. Rev. Lett.
52
,
228
(
1984
).
3.
T.
Grasser
,
Microelectron. Reliab.
52
,
39
(
2012
).
4.
K. S.
Ralls
and
R. A.
Buhrman
,
Phys. Rev. Lett.
60
,
2434
(
1988
).
5.
K. R.
Farmer
,
C. T.
Rogers
, and
R. A.
Buhrman
,
Phys. Rev. Lett.
58
,
2255
(
1987
).
6.
P. G.
Collins
,
M. S.
Fuhrer
, and
A.
Zettl
,
Appl. Phys. Lett.
76
,
894
(
2000
).
7.
M.
Ahlskog
,
R.
Tarkiainen
,
L.
Roschier
, and
P.
Hakonen
,
Appl. Phys. Lett.
77
,
4037
(
2000
).
8.
L.
Roschier
,
R.
Tarkiainen
,
M.
Ahlskog
,
M.
Paalanen
, and
P.
Hakonen
,
Appl. Phys. Lett.
78
,
3295
(
2001
).
9.
H. W. Ch.
Postma
,
T. F.
Teepen
,
Z.
Yao
, and
C.
Dekker
, in
Electronic Correlations: From Meso- to Nano-Physics
, edited by
Th.
Martin
and
G.
Montambaux
(
EDP Sciences
,
France
,
2001
).
10.
R.
Vajtai
,
B. Q.
Wei
,
Z. J.
Zhang
,
Y.
Jung
,
G.
Ramanath
, and
P. M.
Ajayan
,
Smart Mater. Struct.
11
,
691
(
2002
).
11.
P.-E.
Roche
,
M.
Kociak
,
S.
Gueron
,
A.
Kasumov
,
B.
Reulet
, and
H.
Bouchiat
,
Eur. Phys. J. B
28
,
217
(
2002
).
12.
H.
Ouacha
,
M.
Willander
,
H. Y.
Yu
,
Y. W.
Park
,
M. S.
Kabir
,
S. H. M.
Persson
,
L. B.
Kish
, and
A.
Ouacha
,
Appl. Phys. Lett.
80
,
1055
(
2002
).
13.
Y.-M.
Lin
,
J.
Appenzeller
,
Z.
Chen
, and
P.
Avouris
,
Physica E
37
,
72
(
2007
).
14.
F.
Liu
,
M.
Bao
,
H. J.
Kim
,
K. L.
Wang
,
C.
Li
,
X.
Liu
, and
C.
Zhou
,
Appl. Phys. Lett.
86
,
163102
(
2005
).
15.
F.
Liu
,
K. L.
Wang
,
D.
Zhang
, and
C.
Zhou
,
Appl. Phys. Lett.
89
,
243101
(
2006
).
16.
F.
Liu
and
K. L.
Wang
,
Nano Lett.
8
,
147
(
2008
).
17.
Y.
An
,
H.
Rao
,
G.
Bosman
, and
A.
Ural
,
Appl. Phys. Lett.
100
,
213102
(
2012
).
18.
M. G.
Peters
,
J. I.
Dijkhuis
, and
L. W.
Molenkamp
,
J. Appl. Phys.
86
,
1523
(
1999
).
19.
B.
Starmark
,
T.
Henning
,
T.
Claeson
, and
P.
Delsing
,
J. Appl. Phys.
86
,
2132
(
1999
).
20.
S. W.
Lee
,
D. S.
Lee
,
H. Y.
Yu
,
E. E. B.
Campbell
, and
Y. W.
Park
,
Appl. Phys. A
78
,
283
(
2004
).
21.
K. S.
Ralls
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. B
40
,
11561
(
1989
).
22.
K. S.
Ralls
and
R. A.
Buhrman
,
Phys. Rev. B
44
,
5800
(
1991
).
23.
P. A. M.
Holweg
,
J.
Caro
,
A. H.
Verbruggen
, and
S.
Radelaar
,
Phys. Rev. B
45
,
9311
(
1992
).
24.
C. J.
Muller
,
J. M.
van Ruitenbeek
, and
L. J.
de Jongh
,
Phys. Rev. Lett.
69
,
140
(
1992
).
25.
Since we could not measure the α at the low Vds range for TLF1, we simply took the average value of those for TLF2 and TLF3.
26.
S.
Machlup
,
J. Appl. Phys.
25
,
341
(
1954
).
You do not currently have access to this content.