The effect of oxide/oxide interface for controlling the migration process of oxygen vacancies (or oxygen ions) on resistive switching behaviors has been investigated by fabricating the ZrO2/ZnO oxide heterostructures. Completely different resistive switching behaviors are observed in the heterostructures with a set process under a different bias polarity. It is demonstrated that the change of the oxide/oxide interface barrier height determining the migration of oxygen vacancies (or oxygen ions) leads to the current direction-dependent resistive switching. Furthermore, the ZnO/ZrO2 heterostructure with the homogeneous resistive switching behavior could be potentially applied as a controllable and stable multistate memory by controlling reset-stop voltages. Our method opens up an opportunity to explore the resistive switching mechanism and develop resistance switching devices with specific functions through engineering oxide/oxide interfaces in oxide heterostructures.

1.
R.
Waser
and
M.
Aono
,
Nature Mater.
6
,
833
(
2007
).
2.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
,
Adv. Mater.
21
,
2632
(
2009
).
3.
B. J.
Choi
,
D. S.
Jeong
,
S. K.
Kim
,
S.
Choi
,
J. H.
Oh
,
C.
Rohde
,
H. J.
Kim
,
C. S.
Hwang
,
K.
Szot
,
R.
Waser
,
B.
Reichenberg
, and
S.
Tiedke
,
J. Appl. Phys.
98
,
033715
(
2005
).
4.
S.
Seo
,
M. J.
Lee
,
D. H.
Seo
,
E. J.
Jeoung
,
D.-S.
Suh
,
Y. S.
Joung
,
I. K.
Yoo
,
I. R.
Hwang
,
S. H.
Kim
,
I. S.
Byun
,
J.-S.
Kim
,
J. S.
Choi
, and
B. H.
Park
,
Appl. Phys. Lett.
85
,
5655
(
2004
).
5.
C.
Moreno
,
C.
Munuera
,
S.
Valencia
,
F.
Kronast
,
X.
Obradors
, and
C.
Ocal
,
Nano Lett.
10
,
3828
(
2010
).
6.
T.
Hasegawa
,
K.
Terabe
,
T.
Tsuruoka
, and
M.
Aono
,
Adv. Mater.
24
,
252
(
2012
).
7.
R.
Symanczyk
,
R.
Bruchhaus
,
R.
Dittrich
, and
M.
Kund
,
IEEE Electron Device Lett.
30
,
876
(
2009
).
8.
B. J.
Cho
,
S. H.
Son
,
Y. S.
Ji
,
T.-W.
Kim
, and
T. H.
Lee
,
Adv. Funct. Mater.
21
,
2806
(
2011
).
9.
A.
Sawa
,
Mater. Today
11
,
28
(
2008
).
10.
D.-H.
Kwon
,
K. M.
Kim
,
J. H.
Jang
,
J. M.
Jeon
,
M. H.
Lee
,
G. H.
Kim
,
X.-S.
Li
,
G.-S.
Park
,
B.
Lee
,
S.
Han
,
M.
Kim
, and
C. S.
Hwang
,
Nat. Nanotechnol.
5
,
148
(
2010
).
11.
J. S.
Kwak
,
Y. H.
Do
,
Y. C.
Bae
,
H. S.
Im
,
J. H.
Yoo
,
M. G.
Sung
,
Y. T.
Hwang
, and
J. P.
Hong
,
Appl. Phys. Lett.
96
,
223502
(
2010
).
12.
D. S.
Jeong
,
H.
Schroeder
, and
R.
Waser
,
Phys. Rev. B
79
,
195317
(
2009
).
13.
M.-J.
Lee
,
C. B.
Lee
,
D.
Lee
,
S. R.
Lee
,
M.
Chang
,
J. H.
Hur
,
Y.-B.
Kim
,
C.-J.
Kim
,
D. H.
Seo
,
S.
Seo
,
U.-I.
Chung
,
I.-K.
Yoo
, and
K.
Kim
,
Nature Matter.
10
,
625
(
2011
).
14.
Y. C.
Yang
,
S. H.
Choi
, and
W.
Lu
,
Nano Lett.
13
,
2908
(
2013
).
15.
W. T.
Lee
,
J. B.
Park
,
S. H.
Kim
,
J. Y.
Woo
,
J. H.
Shin
,
G. D.
Choi
,
S. S.
Park
,
D. S.
Lee
,
E. J.
Cha
,
B. H.
Lee
, and
H. S.
Hwan
,
ACS Nano
6
,
8166
(
2012
).
16.
S. H.
Chang
,
S. B.
Lee
,
D. Y.
Jeon
,
S. J.
Park
,
G. T.
Kim
,
S. M.
Yang
,
S. C.
Chae
,
H. K.
Yoo
,
B. S.
Kang
,
M.-J.
Lee
, and
T. W.
Noh
,
Adv. Mater.
23
,
4063
(
2011
).
17.
J.-Y.
Chen
,
C.-L.
Hsin
,
C.-W.
Huang
,
C.-H.
Chiu
,
Y.-T.
Huang
,
S.-J.
Lin
,
W.-W.
Wu
, and
L.-J.
Chen
,
Nano Lett.
13
,
3671
(
2013
).
18.
J.-J.
Huang
,
C.-W.
Kuo
,
W.-C.
Chang
, and
T.-H.
Houa
,
Appl. Phys. Lett.
96
,
262901
(
2010
).
19.
M. A.
Lampert
,
Phys. Rev.
103
,
1648
(
1956
).
20.
C.-H.
Huang
,
J.-S.
Huang
,
C.-C.
Lai
,
H.-W.
Huang
,
S.-J.
Lin
, and
Y.-L.
Chueh
,
ACS Appl. Mater. Interfaces
5
,
6017
(
2013
).
21.
S. M.
Yu
,
B.
Gao
,
Z.
Fang
,
H. Y.
Yu
,
J. F.
Kang
, and
H.-S. P.
Wong
,
Adv. Mater.
25
,
1774
(
2013
).
You do not currently have access to this content.