Defect levels in kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have been investigated by current-mode deep level transient spectroscopy. Experiments were carried out on two CZTSSe cells with photoconversion efficiencies of 4.1% and 7.1% measured under AM 1.5 illumination. The absorber layer of the 4.1% efficiency cell was prepared by annealing evaporated ZnS/Cu/Sn stacked precursor under S/Se vapor, while the absorber of the 7.1% efficiency cell was prepared by co-evaporation of the constituent elements. The 4.1% efficiency CZTSSe cell with a S/(S + Se) ratio of 0.58 exhibited two dominant deep acceptor levels at Ev + 0.12 eV, and Ev + 0.32 eV identified as CuZn(-/0) and CuSn(2-/-) antisite defects, respectively. The 7.1% efficiency cell with purely Se composition S/(S + Se) = 0 showed only one shallow level at Ev + 0.03 eV corresponding to Cu-vacancy (VCu). Our results revealed that VCu is the primary defect center in the high-efficiency kesterite solar cell in contrast to the detrimental CuZn and CuSn antisites found in the low efficiency CZTSSe cells limiting the device performance.

1.
T. K.
Todorov
,
J.
Tang
,
S.
Bag
,
O.
Gunawan
,
T.
Gokmen
,
Y.
Zhu
, and
D. B.
Mitzi
,
Adv. Energy Mater.
3
,
34
(
2013
).
2.
S.
Bag
,
O.
Gunawan
,
T.
Gokmen
,
Y.
Zhu
,
T. K.
Todorov
, and
D. B.
Mitzi
,
Energy Environ. Sci.
5
,
7060
(
2012
).
3.
I.
Repins
,
C.
Beall
,
N.
Vora
,
C.
DeHart
,
D.
Kuciauskas
,
P.
Dippo
,
B.
To
,
J.
Mann
,
W.-C.
Hsu
,
A.
Goodrich
, and
R.
Noufi
,
Sol. Energy Mater. Sol. Cells
101
,
154
(
2012
).
4.
K.
Wang
,
O.
Gunawan
,
T.
Todorov
,
B.
Shin
,
S. J.
Chey
,
N. A.
Bojarczuk
,
D.
Mitzi
, and
S.
Guha
,
Appl. Phys. Lett.
97
,
143508
(
2010
).
5.
Q.
Guo
,
G. M.
Ford
,
W.-C.
Yang
,
B. C.
Walker
,
E. A.
Stach
,
H. W.
Hillhouse
, and
R.
Agrawal
,
J. Am. Chem. Soc.
132
,
17384
(
2010
).
6.
H.
Katagiri
,
N.
Sasaguchi
,
S.
Hando
,
S.
Hoshino
,
J.
Ohashi
, and
T.
Yokota
,
Sol. Energy Mater. Sol. Cells
49
,
407
(
1997
).
7.
S.
Das
and
K. C.
Mandal
, in
Proceedings of 38th IEEE Photovoltaic Specialists Conference (PVSC)
(
Austin, Texas
,
2012
), p.
002668
.
8.
R. N.
Bhattacharya
,
Open Surf. Sci. J.
5
,
21
(
2013
).
9.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
10.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S.-H.
Wei
,
Appl. Phys. Lett.
96
,
021902
(
2010
).
11.
I. D.
Oleksyuk
,
I. V.
Dudchar
, and
L. V.
Piskach
,
J. Alloys Compd.
368
,
135
(
2004
).
12.
I. V.
Dudchak
and
L. V.
Piskach
, “
Phase equilibria in the Cu2SnSe3–SnSe2–ZnSe system
,”
J. Alloys Compd.
351
,
145
(
2003
).
13.
S.
Das
,
R. M.
Krishna
,
S.
Ma
, and
K. C.
Mandal
,
J. Cryst. Growth
381
,
148
(
2013
).
14.
S.
Das
and
K. C.
Mandal
,
Jpn. J. Appl. Phys.
52
,
125502
(
2013
).
15.
A.
Nagoya
,
R.
Asahi
,
R.
Wahl
, and
G.
Kresse
,
Phys. Rev. B
81
,
113202
(
2010
).
16.
T.
Maeda
,
S.
Nakamura
, and
T.
Wada
,
Thin Solid Films
519
,
7513
(
2011
).
17.
T.
Maeda
,
S.
Nakamura
, and
T.
Wada
,
Jpn. J. Appl. Phys.
50
,
04DP07
(
2011
).
18.
S.
Chen
,
J.-H.
Yang
,
X. G.
Gong
,
A.
Walsh
, and
S.-H.
Wei
,
Phys. Rev. B
81
,
245204
(
2010
).
19.
S.
Chen
,
A.
Walsh
,
X.-G.
Gong
, and
S.-H.
Wei
,
Adv. Mater.
25
,
1522
(
2013
).
20.
A.
Walsh
,
S.
Chen
,
S.
Wei
, and
X.
Gong
,
Adv. Energy Mater.
2
,
400
(
2012
).
21.
D. V.
Lang
,
J. Appl. Phys.
45
,
3023
(
1974
).
22.
L. L.
Kerr
,
S. S.
Li
,
S. W.
Johnston
,
T. J.
Anderson
,
O. D.
Crisalle
,
W. K.
Kim
,
J.
Abushama
, and
R. N.
Noufi
,
Solid-State Electron.
48
,
1579
(
2004
).
23.
M. A.
Lourenço
,
Y. K.
Yew
,
K. P.
Homewood
,
K.
Durose
,
H.
Richter
, and
D.
Bonnet
,
J. Appl. Phys.
82
,
1423
(
1997
).
24.
J. A.
Borsuk
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
27
,
2217
(
1980
).
25.
E.
Kask
,
T.
Raadik
,
M.
Grossberg
,
R.
Josepson
, and
J.
Krustok
,
Energy Procedia
10
,
261
(
2011
).
You do not currently have access to this content.