We present a metamaterial, consisting of a cross structure and a metal mesh filter, that forms a composite with greater functional bandwidth than any terahertz (THz) metamaterial to date. Metamaterials traditionally have a narrow usable bandwidth that is much smaller than common THz sources, such as photoconductive antennas and difference frequency generation. The composite structure shown here expands the usable bandwidth to exceed that of current THz sources. To highlight the applicability of this combination, we demonstrate a series of bandpass filters with only a single pass band, with a central frequency (f0) that is scalable from 0.86–8.51 THz, that highly extinguishes other frequencies up to >240 THz. The performance of these filters is demonstrated in experiment, using both air biased coherent detection and a Fourier transform infrared spectrometer (FTIR), as well as in simulation. We present equations—and discuss their scaling laws—which detail the f0 and full width at half max (Δf) of the pass band, as well as the required geometric dimensions for their fabrication using standard UV photolithography and easily achievable fabrication linewidths. With these equations, the geometric parameters and Δf for a desired frequency can be quickly calculated. Using these bandpass filters as a proof of principle, we believe that this metamaterial composite provides the key for ultra-broadband metamaterial design.

1.
J. B.
Pendry
,
A. J.
Holden
,
D. J.
Robbins
, and
W. J.
Stewart
,
IEEE Trans. Microwave Theory Tech.
47
,
2075
(
1999
).
2.
D.
Smith
,
W. J.
Padilla
,
D.
Vier
,
S.
Nemat-Nasser
, and
S.
Schultz
,
Phys. Rev. Lett.
84
,
4184
(
2000
).
3.
4.
A.
Grbic
and
G.
Eleftheriades
,
Phys. Rev. Lett.
92
,
117403
(
2004
).
5.
N. B.
Kundtz
,
D. R.
Smith
, and
J. B.
Pendry
,
Proc. IEEE
99
,
1622
(
2011
).
6.
J. F.
O'Hara
,
W.
Withayachumnankul
, and
I.
Al-Naib
,
J. Infrared, Millimeter, Terahertz Waves
33
,
245
(
2012
).
7.
A. C.
Strikwerda
,
K.
Fan
,
H.
Tao
,
D. V.
Pilon
,
X.
Zhang
, and
R. D.
Averitt
,
Opt. Express
17
,
136
(
2008
).
8.
N. K.
Grady
,
J. E.
Heyes
,
D. R.
Chowdhury
,
Y.
Zeng
,
M. T.
Reiten
,
A. K.
Azad
,
A. J.
Taylor
,
D. A. R.
Dalvit
, and
H.-T.
Chen
,
Science
340
,
1304
(
2013
).
9.
H.-T.
Chen
,
J. F.
O'Hara
,
A. K.
Azad
, and
A. J.
Taylor
,
Laser Photonics Rev.
5
,
513
(
2011
).
10.
C. M.
Watts
,
X.
Liu
, and
W. J.
Padilla
,
Adv. Mater.
24
,
OP98
(
2012
).
11.
H.
Tao
,
E. A.
Kadlec
,
A. C.
Strikwerda
,
K.
Fan
,
W. J.
Padilla
,
R. D.
Averitt
,
E. A.
Shaner
, and
X.
Zhang
,
Opt. Express
19
,
21620
(
2011
).
12.
F.
Alves
,
D.
Grbovic
,
B.
Kearney
,
N. V.
Lavrik
, and
G.
Karunasiri
,
Opt. Express
21
,
13256
(
2013
).
13.
D. R.
Smith
,
D. C.
Vier
,
T.
Koschny
, and
C. M.
Soukoulis
,
Phys. Rev. E
71
,
036617
(
2005
).
14.
D. H.
Auston
,
K. P.
Cheung
, and
P. R.
Smith
,
Appl. Phys. Lett.
45
,
284
(
1984
).
15.
H.
Hirori
,
A.
Doi
,
F.
Blanchard
, and
K.
Tanaka
,
Appl. Phys. Lett.
98
,
091106
(
2011
).
16.
H. G.
Roskos
,
M. D.
Thomson
,
M.
Kreß
, and
T.
Löffler
,
Laser Photonics Rev.
1
,
349
(
2007
).
17.
O.
Paul
,
R.
Beigang
, and
M.
Rahm
,
Opt. Express
17
,
18590
(
2009
).
18.
P. A. R.
Ade
,
G.
Pisano
,
C.
Tucker
, and
S.
Weaver
, in
Astron. Telesc. Instrum
., edited by
J.
Zmuidzinas
,
W. S.
Holland
,
S.
Withington
, and
W. D.
Duncan
(
International Society for Optics and Photonics
,
2006
), p.
62750U
1
62750U
15
.
20.
H.-T.
Chen
,
J. F.
O'Hara
,
A. J.
Taylor
,
R. D.
Averitt
,
C.
Highstrete
,
M.
Lee
, and
W. J.
Padilla
,
Opt. Express
15
,
1084
(
2007
).
21.
CST, Microwave Studio,
2013
.
22.
R.
Malureanu
,
M.
Zalkovskij
,
Z.
Song
,
C.
Gritti
,
A.
Andryieuski
,
Q.
He
,
L.
Zhou
,
P. U.
Jepsen
, and
A. V.
Lavrinenko
,
Opt. Express
20
,
22770
(
2012
).
23.
D. J.
Cook
and
R. M.
Hochstrasser
,
Opt. Lett.
25
,
1210
(
2000
).
24.
N.
Karpowicz
,
J.
Dai
,
X.
Lu
,
Y.
Chen
,
M.
Yamaguchi
,
H.
Zhao
,
X.-C.
Zhang
,
L.
Zhang
,
C.
Zhang
,
M.
Price-Gallagher
,
C.
Fletcher
,
O.
Mamer
,
A.
Lesimple
, and
K.
Johnson
,
Appl. Phys. Lett.
92
,
011131
(
2008
).
25.
P.
Klarskov
,
A. C.
Strikwerda
,
K.
Iwaszczuk
, and
P. U.
Jepsen
,
New J. Phys.
15
,
075012
(
2013
).
26.
D. G.
Cooke
,
F. C.
Krebs
, and
P. U.
Jepsen
,
Phys. Rev. Lett.
108
,
056603
(
2012
).
27.
The fits used the simulated data from Table I and the Matlab Curvefitting Toolbox using a power law f=AσB+C. We have rounded to two decimal points in the text to match the precision of the values in Table I. The full results for f0 are A = 8.223 (8.168, 8.278), B = −1.424 (−1.449, −1.399), C = 0.2774 (0.2191, 0.3357); Δf1 are A = 5.511 (5.376, 5.645); B = −1.557 (−1.661, −1.454); C = 0.2178 (0.07851, 0.3571); and Δf2 are A = 3.161 (2.972, 3.35); B = −1.046 (−1.189, −0.9027); C = −0.2098 (−0.4184, −0.001059), where the parantheses represent the 95% confidence bounds.
28.
W.-C.
Chen
,
A.
Totachawattana
,
K.
Fan
,
J. L.
Ponsetto
,
A. C.
Strikwerda
,
X.
Zhang
,
R. D.
Averitt
, and
W. J.
Padilla
,
Phys. Rev. B
85
,
35112
(
2012
).
29.
O.
Sydoruk
,
E.
Tatartschuk
,
E.
Shamonina
, and
L.
Solymar
,
J. Appl. Phys.
105
,
014903
(
2009
).
30.
M.
Zalkovskij
,
R.
Malureanu
,
C.
Kremers
,
D. N.
Chigrin
,
A.
Novitsky
,
S.
Zhukovsky
,
P. T.
Tang
,
P. U.
Jepsen
, and
A. V.
Lavrinenko
,
Laser Photon. Rev.
7
,
810
(
2013
).
31.
P. U.
Jepsen
and
B. M.
Fischer
,
Opt. Lett.
30
,
29
(
2005
).
32.
C. S.
Wang
,
J. M.
Chen
,
R.
Becker
, and
A.
Zdetsis
,
Phys. Lett. A
44
,
517
(
1973
).
You do not currently have access to this content.