We present a study of the phonon and impurity interactions in a shallow two dimensional electron gas formed in Si(001). A highly conductive ultra-narrow n-type dopant δ-layer, which serves as a platform for quantum computation architecture, is formed and studied by angle resolved photoemission spectroscopy (ARPES) and temperature dependent nanoscale 4-point probe (4PP). The bandstructure of the δ-layer state is both measured and simulated. At 100 K, good agreement is only achieved by including interactions; electron-impurity scattering (W0 = 56 to 61 meV); and electron-phonon coupling (λ = 0.14 ± 0.04). These results are shown to be consistent with temperature dependent 4PP resistance measurements which indicate that at 100 K, ≈7∕8 of the measured resistance is due to impurity scattering with the remaining 1/8 coming from phonon interactions. In both resistance and bandstructure measurements, the impurity contribution exhibits a variability of ≈9% for nominally identical samples. The combination of ARPES and 4PP affords a thorough insight into the relevant contributions to electrical resistance in reduced dimensionality electronic platforms.

2.
M.
Ieong
,
B.
Doris
,
J.
Kedzierski
,
K.
Rim
, and
M.
Yang
,
Science
306
,
2057
(
2004
).
4.
B.
Weber
,
S.
Mahapatra
,
H.
Ryu
,
S.
Lee
,
A.
Fuhrer
,
T. C. G.
Reusch
,
D. L.
Thompson
,
W. C. T.
Lee
,
G.
Klimeck
,
L. C. L.
Hollenberg
 et al,
Science
335
,
64
(
2012
).
5.
F. J.
Ruess
,
M.
El Kazzi
,
L.
Czornomaz
,
P.
Mensch
,
M.
Hopstaken
, and
A.
Fuhrer
,
Appl. Phys. Lett.
102
,
082101
(
2013
).
6.
M.
Fuechsle
,
S.
Mahapatra
,
F.
Zwanenburg
,
M.
Friesen
,
M.
Eriksson
, and
M.
Simmons
,
Nat. Nanotechnol.
5
,
502
(
2010
).
7.
M.
Fuechsle
,
J. A.
Miwa
,
S.
Mahapatra
,
H.
Ryu
,
S.
Lee
,
O.
Warschkow
,
L. C. L.
Hollenberg
,
G.
Klimeck
, and
M. Y.
Simmons
,
Nat. Nanotechnol.
7
,
242
(
2012
).
8.
C. M.
Polley
,
W. R.
Clarke
,
J. A.
Miwa
,
M. Y.
Simmons
, and
J. W.
Wells
,
Appl. Phys. Lett.
101
,
262105
(
2012
).
9.
C. M.
Polley
,
W. R.
Clarke
,
J. A.
Miwa
,
G.
Scappucci
,
J. W.
Wells
,
D. L.
Jaeger
,
M. R.
Bischof
,
R. F.
Reidy
,
B. P.
Gorman
, and
M.
Simmons
,
ACS Nano
7
,
5499
(
2013
).
10.
J. A.
Miwa
,
P.
Hofmann
,
M. Y.
Simmons
, and
J. W.
Wells
,
Phys. Rev. Lett.
110
,
136801
(
2013
).
11.
J. A.
Miwa
,
O.
Warschkow
,
D. J.
Carter
,
N. A.
Marks
,
F.
Mazzola
,
M. Y.
Simmons
, and
J. W.
Wells
,
Nano Lett.
14
,
1515
(
2014
).
12.
D. W.
Drumm
,
A.
Budi
,
M. C.
Per
,
S. P.
Russo
, and
L. C. L.
Hollenberg
,
Nanoscale Res. Lett.
8
,
111
(
2013
).
13.
D. J.
Carter
,
O.
Warschkow
,
N. A.
Marks
, and
D. R.
McKenzie
,
Phys. Rev. B
79
,
033204
(
2009
);
D. J.
Carter
,
O.
Warschkow
,
N. A.
Marks
, and
D. R.
McKenzie
,
Phys. Rev. B
80
,
049901
(
2009
).
14.
D. J.
Carter
,
N. A.
Marks
,
O.
Warschkow
, and
D. R.
McKenzie
,
Nanotechnology
22
,
065701
(
2011
).
15.
S.
Lee
,
H.
Ryu
,
H.
Campbell
,
L. C. L.
Hollenberg
,
M. Y.
Simmons
, and
G.
Klimeck
,
Phys. Rev. B
84
,
205309
(
2011
).
16.
D. W.
Drumm
,
L. C. L.
Hollenberg
,
M. Y.
Simmons
, and
M.
Friesen
,
Phys. Rev. B
85
,
155419
(
2012
).
17.
J. S.
Smith
,
J. H.
Cole
, and
S. P.
Russo
,
Phys. Rev. B
89
,
035306
(
2014
).
18.
D. S.
Kilin
and
D. A.
Micha
,
J. Phys. Chem. Lett.
1
,
1073
(
2010
).
19.
T.
Vazhappilly
and
D. A.
Micha
,
Chem. Phys. Lett.
570
,
95
(
2013
).
20.
P.
Hofmann
and
J. W.
Wells
,
J. Phys.: Condens. Matter
21
,
013003
(
2009
).
21.
L.
Oberbeck
,
N. J.
Curson
,
M. Y.
Simmons
,
R.
Brenner
,
A. R.
Hamilton
,
S. R.
Schofield
, and
R. G.
Clark
,
Appl. Phys. Lett.
81
,
3197
(
2002
).
22.
S. R.
McKibbin
,
W. R.
Clarke
,
A.
Fuhrer
, and
M. Y.
Simmons
,
J. Cryst. Growth
312
,
3247
(
2010
).
23.
J. W.
Wells
,
K.
Handrup
,
J. F.
Kallehauge
,
P.
Bøggild
,
M. B.
Balslev
,
J. E.
Hansen
,
P. R. E.
Petersen
, and
P.
Hofmann
,
J. Appl. Phys.
104
,
053717
(
2008
).
24.
E.
Perkins
,
L.
Barreto
,
J.
Wells
, and
P.
Hofmann
,
Rev. Sci. Instrum.
84
,
033901
(
2013
).
25.
T.
Ando
,
A. B.
Fowler
, and
F.
Stern
,
Rev. Mod. Phys.
54
,
437
(
1982
).
26.
J. W.
Wells
,
J. F.
Kallehauge
, and
P.
Hofmann
,
J. Phys.: Condens. Matter
19
,
176008
(
2007
).
27.
J. W.
Wells
,
J. F.
Kallehauge
,
T. M.
Hansen
, and
P.
Hofmann
,
Phys. Rev. Lett.
97
,
206803
(
2006
).
28.
K. E. J.
Goh
,
M. Y.
Simmons
, and
A. R.
Hamilton
,
Phys. Rev. B
76
,
193305
(
2007
).
29.
Here, we extend the definition of “impurity” to include surface localised defects, non-surface physical defects and foreign particles.
30.
G.
Berner
,
M.
Sing
,
H.
Fujiwara
,
A.
Yasui
,
Y.
Saitoh
,
A.
Yamasaki
,
Y.
Nishitani
,
A.
Sekiyama
,
N.
Pavlenko
,
T.
Kopp
 et al,
Phys. Rev. Lett.
110
,
247601
(
2013
).
31.
B.
Jensen
,
S.
Butorin
,
T.
Kaurila
,
R.
Nyholm
, and
L.
Johansson
,
Nucl. Instrum. Methods Phys. Res., Sect. A
394
,
243
(
1997
).
32.
P.
Dziawa
,
B. J.
Kowalski
,
K.
Dybko
,
R.
Buczko
,
A.
Szczerbakow
,
M.
Szot
,
E.
Łusakowska
,
T.
Balasubramanian
,
B. M.
Wojek
,
M. H.
Berntsen
 et al,
Nature Mater.
11
,
1023
(
2012
).
33.
P.
Hofmann
,
I. Y.
Sklyadneva
,
E. D. L.
Rienks
, and
E. V.
Chulkov
,
New J. Phys.
11
,
125005
(
2009
).
34.
S. V.
Kravchenko
and
M. P.
Sarachik
,
Rep. Prog. Phys.
67
,
1
(
2004
).
35.
The ARPES data first undergo a background subtraction, and an intensity normalisation.
36.
G.
Grimvall
,
The Electron-Phonon Interaction in Metals
(
North-Holland
,
1981
).
37.
J. E.
Gayone
,
C.
Kirkegaard
,
J. W.
Wells
,
S. V.
Hoffmann
,
Z.
Li
, and
P.
Hofmann
,
Appl. Phys. A: Mater. Sci. Process.
80
,
943
(
2005
).
38.
J. C.
Johannsen
,
S.
Ulstrup
,
M.
Bianchi
,
R.
Hatch
,
D.
Guan
,
F.
Mazzola
,
L.
Hornekær
,
F.
Fromm
,
C.
Raidel
,
T.
Seyller
 et al,
J. Phys.: Condens. Matter
25
,
094001
(
2013
).
39.
C.
Kirkegaard
,
T. K.
Kim
, and
P.
Hofmann
,
New J. Phys.
7
,
99
(
2005
).
40.
J.
Kröger
,
Rep. Prog. Phys.
69
,
899
(
2006
).
41.
F.
Mazzola
,
J. W.
Wells
,
R.
Yakimova
,
S.
Ulstrup
,
J. A.
Miwa
,
R.
Balog
,
M.
Bianchi
,
M.
Leandersson
,
J.
Adell
,
P.
Hofmann
 et al,
Phys. Rev. Lett.
111
,
216806
(
2013
).
42.
S.
Wei
and
M. Y.
Chou
,
Phys. Rev. B
50
,
2221
(
1994
).
43.
R. C.
Hatch
,
M.
Bianchi
,
D.
Guan
,
S.
Bao
,
J.
Mi
,
B. B.
Iversen
,
L.
Nilsson
,
L.
Hornekær
, and
P.
Hofmann
,
Phys. Rev. B
83
,
241303
(
2011
).
You do not currently have access to this content.