Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles Of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
2005
).
2.
P.
Chabert
and
N. S. J.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
).
3.
D. A.
D'Ippolito
,
J. R.
Myra
,
J.
Jacquinot
, and
M.
Bures
,
Phys. Fluids B
5
,
3603
(
1993
).
4.
L.
Colas
,
A.
Ekedahl
,
M.
Goniche
,
J. P.
Gunn
,
B.
Nold
,
Y.
Corre
,
V.
Bobkov
,
R.
Dux
,
F.
Braun
,
J.-M.
Noterdaeme
 et al,
Plasma Phys. Controlled Fusion
49
,
B35
(
2007
).
5.
J. R.
Myra
and
D. A.
D'Ippolito
,
Phys. Rev. Lett.
101
,
195004
(
2008
).
6.
P.
Chabert
,
J. L.
Raimbault
,
P.
Levif
,
J. M.
Rax
, and
M. A.
Lieberman
,
Phys. Rev. Lett.
95
,
205001
(
2005
).
7.
M. M.
Turner
and
P.
Chabert
,
Phys. Rev. Lett.
96
,
205001
(
2006
).
8.
F.
Schneider
,
Z. Angew. Phys.
6
,
456
(
1954
).
9.
H. S.
Butler
and
G. S.
Kino
,
Phys. Fluids
6
,
1346
(
1963
).
10.
V. A.
Godyak
,
Soviet Radio Frequency Discharge Research
(
Delphic Associates
,
1986
).
11.
R. P.
Brinkmann
,
J. Phys. D: Appl. Phys.
42
,
194009
(
2009
).
12.
M.
Lieberman
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
13.
S.-B.
Wang
and
A. E.
Wendt
,
J. Appl. Phys.
88
,
643
(
2000
).
14.
B. G.
Heil
,
U.
Czarnetzki
,
R. P.
Brinkmann
, and
T.
Mussenbrock
,
J. Phys. D: Appl. Phys.
41
,
165202
(
2008
).
15.
E. V.
Johnson
,
T.
Verbeke
,
J.-C.
Vanel
, and
J.-P.
Booth
,
J. Phys. D: Appl. Phys.
43
,
412001
(
2010
).
16.
E. V.
Johnson
,
P. A.
Delattre
, and
J. P.
Booth
,
Appl. Phys. Lett.
100
,
133504
(
2012
).
17.
T.
Lafleur
,
R. W.
Boswell
, and
J. P.
Booth
,
Appl. Phys. Lett.
100
,
194101
(
2012
).
18.
J.
Robiche
,
P. C.
Boyle
,
M. M.
Turner
, and
A. R.
Ellingboe
,
J. Phys. D: Appl. Phys.
36
,
1810
(
2003
).
19.
R. N.
Franklin
,
J. Phys. D: Appl. Phys.
36
,
2660
(
2003
).
20.
P. C.
Boyle
,
J.
Robiche
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
37
,
1451
(
2004
).
21.
C. D.
Child
,
Phys. Rev. (Ser. I)
32
,
492
(
1911
).
22.
23.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
Adam Hilger
,
1991
).
24.
C. K.
Birdsall
,
IEEE Trans. Plasma Sci.
19
,
65
(
1991
).
You do not currently have access to this content.