Strain-induced changes of ZnTe energy gap in ZnTe/ZnMgTe core/shell nanowires arising from lattice mismatch between the core and the shell semiconductor are studied by means of optical methods. It is shown that the increase of the Mg content in the shell, as well as the increase of the shell thickness result in an effective redshift of the near band edge photoluminescence from ZnTe nanowire cores, which reflects directly the decrease of energy gap under tensile strain conditions. The conclusions are supported by theoretical calculations in terms of the valence force field model. The observed change of ZnTe energy gap can be as large as 120 meV with respect to the unstrained conditions and can be tuned in a continuous manner by adjusting shell parameters, which open a path towards an effective band gap engineering in these structures.

1.
B.
Tian
,
X.
Zheng
,
T. J.
Kempa
,
Y.
Fang
,
N.
Yu
,
G.
Yu
,
J.
Huang
, and
C. M.
Lieber
,
Nature
449
,
885
(
2007
).
2.
X.
Jiang
,
Q.
Xiong
,
S.
Nam
,
F.
Qian
,
Y.
Li
, and
C. M.
Lieber
,
Nano Lett.
7
,
3214
(
2007
).
3.
F.
Qian
,
Y.
Li
,
S.
Gradecak
,
D.
Wang
,
C. J.
Barrelet
, and
C. M.
Lieber
,
Nano Lett.
4
,
1975
(
2004
).
4.
F.
Qian
,
S.
Gradecak
,
Y.
Li
,
C. Y.
Wen
, and
C. M.
Lieber
,
Nano Lett.
5
,
2287
(
2005
).
5.
F.
Qian
,
Y.
Li
,
S.
Gradecak
,
H. G.
Park
,
Y. J.
Dong
,
Y.
Ding
,
Z. L.
Wang
, and
C. M.
Lieber
,
Nature Mater.
7
,
701
(
2008
).
6.
Y.
Li
,
J.
Xiang
,
F.
Qian
,
S.
GradeCak
,
Y.
Wu
,
H.
Yan
,
H.
Yan
,
D. A.
Blom
, and
C. M.
Lieber
,
Nano Lett.
6
,
1468
(
2006
).
7.
N.
Sköld
,
L. S.
Karlsson
,
M. W.
Larsson
,
M. E.
Pistol
,
W.
Selfert
,
J.
Tragardh
, and
L.
Samuelson
,
Nano Lett.
5
,
1943
(
2005
).
8.
A.
Biermanns
,
T.
Rieger
,
G.
Bussone
,
U.
Pietsch
,
D.
Gruetzmacher
, and
M. I.
Lepsa
,
Appl. Phys. Lett.
102
,
043109
(
2013
).
9.
K.
Hestroffer
,
R.
Mata
,
D.
Camacho
,
C.
Leclere
,
G.
Tourbot
,
Y.
Niquet
,
A.
Cros
,
C.
Bougerol
,
H.
Renevier
, and
B.
Daudin
,
Nanotechnology
21
,
415702
(
2010
).
10.
M. B.
Bavinck
,
M.
Zielinski
,
B. J.
Witek
,
T.
Zehender
,
E. P.
Bakkers
, and
V.
Zwiller
,
Nano Lett.
12
,
6206
(
2012
).
11.
M.
Montazeri
,
M.
Fickenscher
,
L. M.
Smith
,
H. E.
Jackson
,
J.
Yarrison-Rice
,
J. H.
Kang
,
Q.
Gao
,
H.
Tan
,
C.
Jagadish
,
Y.
Guo
,
J.
Zou
,
M. E.
Pistol
, and
C. E.
Pryor
,
Nano Lett.
10
,
880
(
2010
).
12.
L.
Rigutti
,
G.
Jacopin
,
L.
Largeau
,
E.
Galopin
,
A.
Bugallo
,
F.
Julien
,
J.
Harmand
,
F.
Glas
, and
M.
Tchernycheva
,
Phys. Rev. B
83
,
155320
(
2011
).
13.
E.
Yoskovitz
,
G.
Menagen
,
A.
Sitt
,
E.
Lachman
, and
U.
Banin
,
Nano Lett.
10
,
3068
(
2010
).
14.
A.
Artioli
,
P.
Rueda-Fonseca
,
P.
Stepanov
,
E.
Bellet-Amalric
,
M. D.
Hertog
,
C.
Bougerol
,
Y.
Genuist
,
F.
Donatini
,
R.
Andre
,
G.
Nogues
,
K.
Kheng
,
S.
Tatarenko
,
D.
Ferrand
, and
J.
Cibert
,
Appl. Phys. Lett.
103
,
222106
(
2013
).
15.
E.
Janik
,
J.
Sadowski
,
P.
Dluzewski
,
S.
Kret
,
L. T.
Baczewski
,
A.
Petroutchik
,
E.
Lusakowska
,
J.
Wrobel
,
W.
Zaleszczyk
,
G.
Karczewski
,
T.
Wojtowicz
, and
A.
Presz
,
Appl. Phys. Lett.
89
,
133114
(
2006
).
16.
P.
Wojnar
,
M.
Szymura
,
W.
Zaleszczyk
,
L.
Klopotowski
,
E.
Janik
,
M.
Wiater
,
L. T.
Baczewski
,
S.
Kret
,
G.
Karczewski
,
J.
Kossut
, and
T.
Wojtowicz
,
Nanotechnology
24
,
365201
(
2013
).
17.
P.
Wojnar
,
E.
Janik
,
L. T.
Baczewski
,
S.
Kret
,
E.
Dynowska
,
T.
Wojciechowski
,
J.
Suffczynski
,
J.
Papierska
,
P.
Kossacki
,
G.
Karczewski
,
J.
Kossut
, and
T.
Wojtowicz
,
Nano Lett.
12
,
3404
(
2012
).
18.
S.
Raychaudhuri
and
E. T.
Yu
,
J. Appl. Phys.
99
,
114308
(
2006
).
19.
C.
Haapamaki
,
J.
Baugh
, and
R.
LaPierre
,
J. Appl. Phys.
112
,
124305
(
2012
).
20.
K. L.
Kavanagh
,
J.
Salfi
,
I.
Savelyev
,
M.
Blumin
, and
H. E.
Ruda
,
Appl. Phys. Lett.
98
,
152103
(
2011
).
21.
T. E.
Trammell
,
X.
Zhang
,
Y.
Li
,
L. Q.
Chen
, and
E. C.
Dickey
,
J. Cryst. Growth
310
,
3084
(
2008
).
22.
P. N.
Keating
,
Phys. Rev.
145
,
637
(
1966
).
23.
R. M.
Martin
,
Phys. Rev. B
1
,
4005
(
1970
).
24.
Y. M.
Niquet
,
A.
Lherbier
,
N. H.
Quang
,
M. V.
Fernandez-Serra
,
X.
Blase
, and
C.
Delerue
,
Phys. Rev. B
73
,
165319
(
2006
).
25.
M.
Zielinski
,
Phys. Rev. B
86
,
115424
(
2012
).
26.
M.
Zielinski
,
J. Phys.: Condens. Matter
25
,
465301
(
2013
).
27.
J. M.
Hartmann
,
J.
Cibert
,
F.
Kany
,
H.
Mariette
,
M.
Charleux
,
P.
Alleysson
,
R.
Langer
, and
G.
Feuillet
,
J. Appl. Phys.
80
,
6257
(
1996
).
28.
P.
Bhardwaj
,
S.
Singh
, and
N. K.
Gaur
,
Turk. J. Phys.
32
,
85
(
2008
).
29.
H.
Landolt
and
R.
Bornstein
,
Semiconductors, Physics of IV, III-V, II-VI and I-VII Compounds
(
Springer
,
Berlin
,
1982
), Vol
III/17 B
.
30.
S.
Mnasri
,
S. B.-B.
Nasrallah
,
N.
Sfina
,
N.
Bouarissa
, and
M.
Said
,
Semicond. Sci. Technol.
24
,
095008
(
2009
).
31.
M.
Zielinski
,
Acta Phys. Pol., A
122
,
312
(
2012
).
32.
S.
Lee
,
F.
Oyafuso
,
P.
von Allmen
, and
G.
Klimeck
,
Phys. Rev. B
69
,
045316
(
2004
).
33.
There is a little unambiguous data available in the literature,26,29 regarding MgTe bulk elastic constants, therefore, we use averaged value of c44 = 32.0 GPa. We found, however, that our results do not depend significantly on the choice of the VFF parameterization and the bulk elastic constants c44.
34.
G. L.
Bir
and
G. E.
Pikus
,
Symmetry and Strain-Induced Effects in Semiconductors
(
Wiley
,
New York
,
1975
).
35.
C. G.
Van de Walle
,
Phys. Rev. B
39
,
1871
(
1989
).
36.
S. H.
Wei
and
A.
Zunger
,
Phys. Rev. B
49
,
14337
(
1994
).
You do not currently have access to this content.