We report on the results of the low-frequency (1/f, where f is frequency) noise measurements in MoS2 field-effect transistors revealing the relative contributions of the MoS2 channel and Ti/Au contacts to the overall noise level. The investigation of the 1/f noise was performed for both as fabricated and aged transistors. It was established that the McWhorter model of the carrier number fluctuations describes well the 1/f noise in MoS2 transistors, in contrast to what is observed in graphene devices. The trap densities extracted from the 1/f noise data for MoS2 transistors, are 2 × 1019 eV−1cm−3 and 2.5 × 1020 eV−1cm−3 for the as fabricated and aged devices, respectively. It was found that the increase in the noise level of the aged MoS2 transistors is due to the channel rather than the contact degradation. The obtained results are important for the proposed electronic applications of MoS2 and other van der Waals materials.

1.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
(
2013
).
2.
M.
Chhowalla
,
H. S.
Shin
,
G.
Eda
,
L.-J.
Li
,
K. P.
Loh
, and
H.
Zhang
,
Nat. Chem.
5
,
263
(
2013
).
3.
D.
Teweldebrhan
,
V.
Goyal
, and
A. A.
Balandin
,
Nano Lett.
10
,
1209
(
2010
).
4.
Z.
Yan
,
C.
Jiang
,
T. R.
Pope
,
C. F.
Tsang
,
J. L.
Stickney
,
P.
Goli
,
J.
Renteria
,
T. T.
Salguero
, and
A. A.
Balandin
,
J. Appl. Phys.
114
,
204301
(
2013
).
5.
J.
Heising
and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
121
,
11720
(
1999
).
6.
Y.
Kim
,
J.-L.
Huang
, and
C. M.
Lieber
,
Appl. Phys. Lett.
59
,
3404
(
1991
).
7.
J. L.
Verble
and
T. J.
Wieting
,
Phys. Rev. Lett.
25
,
362
(
1970
).
8.
S. W.
Han
,
H.
Kwon
,
S. K.
Kim
,
S.
Ryu
,
W. S.
Yun
,
D. H.
Kim
,
J. H.
Hwang
,
J.-S.
Kang
,
J.
Baik
,
H. J.
Shin
, and
S. C.
Hong
,
Phys. Rev. B
84
,
045409
(
2011
).
9.
J. M.
Salmani
,
Y.
Tan
, and
G.
Klimeck
, in
Proceedings of the International Semiconductor Device Research Symposium
(
2011
), p.
1
.
10.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
11.
G.
Eda
,
H.
Yamaguchi
,
D.
Voiry
,
T.
Fujita
,
M.
Chen
, and
M.
Chhowalla
,
Nano Lett.
11
,
5111
(
2011
).
12.
H.
Li
,
Z.
Yin
,
Q.
He
,
H.
Li
,
X.
Huang
,
G.
Lu
,
D. W. H.
Fam
,
A. I. Y.
Tok
,
Q.
Zhang
, and
H.
Zhang
,
Small
8
,
63
(
2012
).
13.
S.
Das
,
H.-Y.
Chen
,
A. V.
Penumatcha
, and
J.
Appenzeller
,
Nano Lett.
13
,
100
(
2013
).
14.
H.
Wang
,
L.
Yu
,
Y.-H.
Lee
,
Y.
Shi
,
A.
Hsu
,
M.
Chin
,
L.-J.
Li
,
M.
Dubey
,
J.
Kong
, and
T.
Palacios
,
Nano Lett.
12
,
4674
(
2012
).
15.
A. L.
McWhorter
, in
Semiconductor Surface Physics
, edited by
R. H.
Kingston
(
University of Pennsylvania Press
,
Philadelphia
,
1957
), pp.
207
228
.
16.
F. N.
Hooge
,
IEEE Trans. Electron Devices
41
,
1926
(
1994
).
17.
18.
M. B.
Weissman
,
Rev. Mod. Phys.
60
,
537
(
1988
).
19.
P.
Dutta
and
P. M.
Horn
,
Rev. Mod. Phys.
53
,
497
(
1981
).
20.
K. K.
Hung
,
P. K.
Ko
,
H.
Chenming
, and
Y. C.
Cheng
,
IEEE Trans. Electron Devices
37
,
654
(
1990
).
21.
A.
Van der Ziel
,
Proc. IEEE
76
,
233
(
1988
).
22.
E.
Simoen
,
A.
Mercha
,
C.
Claeys
, and
E.
Young
,
Appl. Phys. Lett.
85
,
1057
(
2004
).
23.
A. A.
Balandin
,
Noise and Fluctuations Control in Electronic Devices
(
American Scientific
,
Los Angeles
,
2002
).
24.
A. A.
Balandin
,
Nat. Nanotechnol.
8
,
549
(
2013
).
25.
V. K.
Sangwan
,
H. N.
Arnold
,
D.
Jariwala
,
T. J.
Marks
,
L. J.
Lauhon
, and
M. C.
Hersam
,
Nano Lett.
13
,
4351
(
2013
).
26.
Y.
Wang
,
X.
Luo
,
N.
Zhang
,
M. R.
Laskar
,
L.
Ma
,
Y.
Wu
,
S.
Rajan
, and
W.
Lu
, in
82nd ARFTG Microwave Measurement Conference
(
IEEE
,
2013
), pp. 1–3.
27.
J.
Na
,
M.-K.
Joo
,
M.
Shin
,
J.
Huh
,
J.-S.
Kim
,
M.
Piao
,
J.-E.
Jin
,
H.-K.
Jang
,
H. J.
Choi
,
J. H.
Shim
, and
G.-T.
Kim
,
Nanoscale
6
,
433
(
2014
).
28.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
29.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
30.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
(
2005
).
31.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
,
ACS Nano.
4
(
5
),
2695
(
2010
).
32.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
,
Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U.S.A.
102
(
30
),
10451
10453
(
2005
).
33.
S.
Ghatak
,
A. N.
Pal
, and
A.
Ghosh
,
ACS Nano
5
,
7707
(
2011
).
34.
M.
Xu
,
T.
Liang
,
M.
Shi
, and
H.
Chen
,
Chem. Rev.
113
,
3766
(
2013
).
35.
M.
Shur
,
Introduction to Electronic Devices
(
Wiley
,
1995
), p.
393
.
36.
A.
Ayari
,
E.
Cobas
, and
O.
Ogundadegbe
,
J. Appl. Phys.
101
,
014507
(
2007
).
37.
S.
Rumyantsev
,
G.
Liu
,
M.
Shur
, and
A. A.
Balandin
,
J. Phys.: Condens. Matter
22
,
395302
(
2010
).
38.
G.
Xu
,
C. M.
Torres
, Jr.
,
Y.
Zhang
,
F.
Liu
,
E. B.
Song
,
M.
Wang
,
Y.
Zhou
,
C.
Zeng
, and
K. L.
Wang
,
Nano Lett.
10
,
3312
(
2010
).
39.
Y.
Zhang
,
E. E.
Mendez
, and
X.
Du
,
ACS Nano
5
,
8124
(
2011
).
40.
M. Z.
Hossain
,
S.
Rumyantsev
,
M. S.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
102
,
153512
(
2013
).
41.
G.
Liu
,
S.
Rumyantsev
,
M. S.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
100
,
033103
(
2012
).
42.
G.
Liu
,
S.
Rumyantsev
,
M. S.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
102
,
093111
(
2013
).
43.
S. L.
Rumyantsev
,
D.
Coquillat
,
R.
Ribeiro
,
M.
Goiran
,
W.
Knap
,
M. S.
Shur
,
A. A.
Balandin
, and
M. E.
Levinshtein
,
Appl. Phys. Lett.
103
,
173114
(
2013
).
You do not currently have access to this content.