Despite progress in the performance of Bi2Sr2CaCu2Ox (Bi2212)/Ag multifilamentary round wires, understanding the impact of microstructural defects on multiple length scales on electrical transport remains a significant challenge. Many recent studies have focused on porosity, but porosity is not the only factor in determining Jc. The primary impurity in partial-melt processed multifilamentary Bi2212 wires is Bi2Sr2CuOx (Bi2201), which forms as mesoscopic grains and nanoscopic intergrowths. Previously, we showed the destructive effect of Bi2201 grains on transport. Here, we relate scanning transmission electron microscopy results to the Bi2212 coherence length, anisotropic magnetization behavior, and magnetic-field dependent transport to study c-axis transport and the effects of Bi2201 intergrowths on magnetic flux pinning. We show that wide Bi2201 intergrowths are barrier to c-axis transport within Bi2212 grains, whereas narrow (half- and full-cell) Bi2201 intergrowths are not detrimental to c-axis transport and are likely magnetic flux pinning centers. These results have significant impact on the understanding of Bi2212/Bi2201 systems and provide important physical insight towards future improvements in devices based upon wires, film, and junctions.

1.
J.
Jiang
,
H.
Miao
,
Y.
Huang
,
S.
Hong
,
J. A.
Parrell
,
C.
Scheuerlein
,
M.
Di Michiel
,
A. K.
Ghosh
,
U. P.
Trociewitz
, and
E. E.
Hellstrom
,
IEEE Trans. Appl. Supercond.
23
,
6400206
(
2013
).
2.
M.
Hanping
,
H.
Yibing
,
H.
Seung
, and
J. A.
Parrell
,
IEEE Trans. Appl. Supercond.
23
(
3
),
6400104
(
2013
).
3.
J.
Jiang
,
W. L.
Starch
,
M.
Hannion
,
F.
Kametani
,
U. P.
Trociewitz
,
E. E.
Hellstrom
, and
D. C.
Larbalestier
,
Supercond. Sci. Technol.
24
(
8
),
082001
(
2011
).
4.
T.
Shen
,
A.
Ghosh
,
L.
Cooley
, and
J.
Jiang
,
J. Appl. Phys.
113
(
21
),
213901
(
2013
).
5.
D.
Christen
,
Nature
392
(
6679
),
862
(
1998
).
6.
D.
Larbalestier
,
A.
Gurevich
,
D.
Matthew Feldmann
, and
A.
Polyanskii
,
Nature
414
(
6861
),
368
(
2001
).
7.
S. R.
Foltyn
,
L.
Civale
,
J. L.
Macmanus-Driscoll
,
Q. X.
Jia
,
B.
Maiorov
,
H.
Wang
, and
M.
Maley
,
Nat. Mater.
6
(
9
),
631
(
2007
).
8.
G.
Naderi
,
X.
Liu
,
W.
Nachtrab
, and
J.
Schwartz
,
Supercond. Sci. Technol.
26
(
10
),
105010
(
2013
).
9.
F.
Kametani
,
T.
Shen
,
J.
Jiang
,
C.
Scheuerlein
,
A.
Malagoli
,
M.
Di Michiel
,
Y.
Huang
,
H.
Miao
,
J. A.
Parrell
,
E. E.
Hellstrom
, and
D. C.
Larbalestier
,
Supercond. Sci. Technol.
24
(
7
),
075009
(
2011
).
10.
A.
Kajbafvala
,
W.
Nachtrab
,
L.
Xi Feng
,
F.
Hunte
,
L.
Xiaotao
,
N.
Cheggour
,
T.
Wong
, and
J.
Schwartz
,
IEEE Trans. Appl. Supercond.
22
(
1
),
8400210
(
2012
).
11.
A.
Godeke
,
P.
Acosta
,
D.
Cheng
,
D. R.
Dietderich
,
M. G. T.
Mentink
,
S. O.
Prestemon
,
G. L.
Sabbi
,
M.
Meinesz
,
S.
Hong
,
Y.
Huang
,
H.
Miao
, and
J.
Parrell
,
Supercond. Sci. Technol.
23
(
3
),
034022
(
2010
).
12.
X. T.
Liu
,
Q. V.
Le
, and
J.
Schwartz
,
Supercond. Sci. Technol.
25
(
7
),
075008
(
2012
).
13.
T.
Shen
,
J.
Jiang
,
F.
Kametani
,
U. P.
Trociewitz
,
D. C.
Larbalestier
,
J.
Schwartz
, and
E. E.
Hellstrom
,
Supercond. Sci. Technol.
23
(
2
),
025009
(
2010
).
14.
W.
Zhang
and
E. E.
Hellstrom
,
Physica C
218
(
1–2
),
141
(
1993
).
15.
E.
Cecchetti
,
P. J.
Ferreira
, and
J. B.
Vander Sande
,
Supercond. Sci. Technol.
13
(
8
),
1270
(
2000
).
16.
B.
Ozcelik
,
B.
Ozkurt
,
M. E.
Yakinci
,
A.
Sotelo
, and
M. A.
Madre
,
J. Supercond. Novel Magn.
26
(
4
),
873
(
2013
).
17.
A.
Villaume
,
D.
Bourgault
,
L.
Porcar
,
A.
Girard
,
C. E.
Bruzek
, and
P. F.
Sibeud
,
Supercond. Sci. Technol.
20
(
7
),
691
(
2007
).
18.
E. B.
Callaway
,
G.
Naderi
,
Q. V.
Le
, and
J.
Schwartz
,
Supercond. Sci. Technol.
27
(
4
),
044020
(
2014
).
19.
D.
Sager
,
M.
Koch
,
B.
Hallstedt
,
L. J.
Gauckler
, and
M.
Chen
,
Physica C
405
(
2
),
103
(
2004
).
20.
B.
Heeb
,
L. J.
Gauckler
,
H.
Heinrich
, and
G.
Kostorz
,
J. Mater. Res.
8
(
09
),
2170
(
1993
).
21.
S.
Graser
,
P. J.
Hirschfeld
,
T.
Kopp
,
R.
Gutser
,
B. M.
Andersen
, and
J.
Mannhart
,
Nat. Phys.
6
(
8
),
609
(
2010
).
22.
M. R.
Koblischka
and
U.
Hartmann
,
Phys. Status Solidi C
2
(
5
),
1726
(
2005
).
23.
A.
Llordes
,
A.
Palau
,
J.
Gazquez
,
M.
Coll
,
R.
Vlad
,
A.
Pomar
,
J.
Arbiol
,
R.
Guzman
,
S.
Ye
,
V.
Rouco
,
F.
Sandiumenge
,
S.
Ricart
,
T.
Puig
,
M.
Varela
,
D.
Chateigner
,
J.
Vanacken
,
J.
Gutierrez
,
V.
Moshchalkov
,
G.
Deutscher
,
C.
Magen
, and
X.
Obradors
,
Nat. Mater.
11
(
4
),
329
(
2012
).
24.
M.
Nishiyama
,
G.
Kinoda
,
Y.
Zhao
,
T.
Hasegawa
,
Y.
Itoh
,
N.
Koshizuka
, and
M.
Murakami
,
Supercond. Sci. Technol.
17
(
12
),
1406
(
2004
).
25.
J.
Sosnowski
,
J. Phys.: Conf. Ser.
43
,
659
(
2006
).
26.
G.
Blatter
,
M. V.
Feigel'man
,
V. B.
Geshkenbein
,
A. I.
Larkin
, and
V. M.
Vinokur
,
Rev. Mod. Phys.
66
(
4
),
1125
(
1994
).
27.
H.
Yamasaki
and
K.
Endo
,
Supercond. Sci. Technol.
27
,
025014
(
2014
).
28.
P.
Yang
and
C. M.
Lieber
,
Science
273
(
5283
),
1836
(
1996
).
29.
K.
Fossheim
,
E. D.
Tuset
,
T. W.
Ebbesen
,
M. M. J.
Treacy
, and
J.
Schwartz
,
Physica C
248
(
3–4),
195
(
1995
).
30.
C.
Pegrum
,
Nature
358
(
6383
),
193
(
1992
).
31.
R. A.
Klemm
,
J. Supercond.
18
(
5–6), 6
97
(
2005
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4871805 for experimental details.
33.
T.
Örd
,
K.
Rägo
, and
A.
Vargunin
,
J. Supercond. Novel Magn.
25
(
5
),
1351
(
2012
).
34.
D.
Agassi
,
D. K.
Christen
, and
S. J.
Pennycook
,
Appl. Phys. Lett.
81
,
2803
(
2002
).
35.
X. Y.
Cai
,
A.
Polyanskii
,
Q.
Li
,
G. N.
Riley
, and
D. C.
Larbalestier
,
Nature
392
(
6679
),
906
(
1998
).
36.
C. P.
Bean
,
Rev. Mod. Phys.
36
,
31
(
1964
).
37.
D. C.
Van der Laan
,
J.
Schwartz
,
B.
ten Haken
,
M.
Dhalle
, and
H. J. N.
van Eck
,
Phys. Rev. B
77
(
10
),
104514
(
2008
).
38.
H. W.
Weijers
,
B.
ten Haken
,
H. H. J.
ten Kate
, and
J.
Schwartz
,
IEEE Trans. Appl. Supercond.
15
(
2
),
2558
(
2005
).
39.
B.
Xu
,
J. H.
Su
, and
J.
Schwartz
,
Supercond. Sci. Technol.
18
(
4
),
503
(
2005
).
40.
D.
Larbalestier
,
Nature
343
(
6255
),
210
(
1990
).
41.
R.
Kleiner
and
P.
Müller
,
Phys. Rev. B
49
(
2
),
1327
(
1994
).

Supplementary Material

You do not currently have access to this content.