The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C71 butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

1.
M.
Jørgensen
,
J. E.
Carlé
,
R. R.
Søndergaard
,
M.
Lauritzen
,
N. A.
Dagnæs-Hansen
,
S. L.
Byskov
,
T. R.
Andersen
,
T. T.
Larsen-Olsen
,
A. P. L.
Böttiger
,
B.
Andreasen
,
L.
Fu
,
L.
Zuo
,
Y.
Liu
,
E.
Bundgaard
,
X.
Zhan
,
H.
Chen
, and
F. C.
Krebs
,
Sol. Energy Mater. Sol. Cells
119
,
84
(
2013
).
2.
G.
Dennler
,
M. C.
Scharber
, and
C. J.
Brabec
,
Adv. Mater.
21
(
13
),
1323
(
2009
).
3.
X.
Yang
and
A.
Uddin
,
Renewable Sustainable Energy Rev.
30
,
324
(
2014
).
4.
J.
Kniepert
,
I.
Lange
,
N. J.
van der Kaap
,
L. J. A.
Koster
, and
D.
Neher
, “
A conclusive view on charge generation, recombination, and extraction in as-prepared and annealed P3HT:PCBM blends: Combined experimental and simulation work
,”
Adv. Energy Mater.
(published online).
5.
T.
Wang
,
A. J.
Pearson
,
D. G.
Lidzey
, and
R. A. L.
Jones
,
Adv. Funct. Mater.
21
(
8
),
1383
(
2011
).
6.
O.
Oklobia
and
T. S.
Shafai
,
Solid-State Electron.
87
,
64
(
2013
).
7.
R.
Søndergaard
,
M.
Hösel
,
D.
Angmo
,
T. T.
Larsen-Olsen
, and
F. C.
Krebs
,
Mater. Today
15
(
1–2
),
36
(
2012
).
8.
J. E.
Carle
,
M.
Helgesen
,
M. V.
Madsen
,
E.
Bundgaard
, and
F. C.
Krebs
,
J. Mater. Chem. C
2
(
7
),
1290
(
2014
).
9.
S.
Lee
,
J.-S.
Yeo
,
Y.
Ji
,
C.
Cho
,
D.-Y.
Kim
,
S.-I.
Na
,
B. H.
Lee
, and
T.
Lee
,
Nanotechnology
23
(
34
),
344013
(
2012
).
10.
S.-I.
Na
,
S.-S.
Kim
,
J.
Jo
, and
D.-Y.
Kim
,
Adv. Mater.
20
(
21
),
4061
(
2008
).
11.
M.
Ohzeki
,
S.
Fujii
,
Y.
Arai
,
T.
Yanagidate
,
Y.
Yanagi
,
T.
Okukawa
,
A.
Yoshida
,
H.
Kataura
, and
Y.
Nishioka
,
Jpn. J. Appl. Phys., Part 1
53
(
2S
),
02BE04
(
2014
).
12.
Z.
Yin
,
J.
Zhu
,
Q.
He
,
X.
Cao
,
C.
Tan
,
H.
Chen
,
Q.
Yan
, and
H.
Zhang
,
Adv. Energy Mater.
4
(
1
),
1300574
(
2014
).
13.
D.
Chen
,
H.
Zhang
,
Y.
Liu
, and
J.
Li
,
Energy Environ. Sci.
6
(
5
),
1362
(
2013
).
14.
A.
Iwan
and
A.
Chuchmała
,
Prog. Polym. Sci.
37
(
12
),
1805
(
2012
).
15.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
(
5696
),
666
(
2004
).
16.
C. N. R.
Rao
,
A. K.
Sood
,
K. S.
Subrahmanyam
, and
A.
Govindaraj
,
Angew. Chem., Int. Ed.
48
(
42
),
7752
(
2009
).
17.
F.
Bonaccorso
,
Z.
Sun
,
T.
Hasan
, and
A. C.
Ferrari
,
Nat. Photonics
4
(
9
),
611
(
2010
).
18.
D.
Jinhong
and
C. H.
Ming
,
Macromol. Chem. Phys.
213
(
10–11
),
1060
(
2012
).
19.
S.
Xuemei
,
S.
Hao
,
L.
Houpu
, and
P.
Huisheng
,
Adv. Mater.
25
(
37
),
5153
(
2013
).
20.
S.
Sasha
,
A. D.
Dmitriy
,
H. B. D.
Geoffrey
,
M. K.
Kevin
,
J. Z.
Eric
,
A. S.
Eric
,
D. P.
Richard
,
T. N.
SonBinh
, and
S. R.
Rodney
,
Nature
442
(
7100
),
282
(
2006
).
21.
Q.
Liu
,
Z.
Liu
,
X.
Zhang
,
N.
Zhang
,
L.
Yang
,
S.
Yin
, and
Y.
Chen
,
Appl. Phys. Lett.
92
(
22
),
223303
(
2008
).
22.
D.
Yu
,
Y.
Yang
,
M.
Durstock
,
J.-B.
Baek
, and
L.
Dai
,
ACS Nano
4
(
10
),
5633
(
2010
).
23.
D.
Yu
,
K.
Park
,
M.
Durstock
, and
L.
Dai
,
J. Phys. Chem. Lett.
2
(
10
),
1113
(
2011
).
24.
A. K.
Manna
and
S. K.
Pati
,
ChemPhysChem
14
(
9
),
1844
(
2013
).
25.
W.
Chen
,
H.
Huang
,
A.
Thye
, and
S.
Wee
,
Chem. Commun.
2008
(
36
),
4276
.
26.
B. W.
D'Andrade
,
S.
Datta
,
S. R.
Forrest
,
P.
Djurovich
,
E.
Polikarpov
, and
M. E.
Thompson
,
Org. Electron.
6
(
1
),
11
(
2005
).
27.
B. W.
Larson
,
J. B.
Whitaker
,
X.-B.
Wang
,
A. A.
Popov
,
G.
Rumbles
,
N.
Kopidakis
,
S. H.
Strauss
, and
O. V.
Boltalina
,
J. Phys. Chem. C
117
(
29
),
14958
(
2013
).
28.
V.
Zardetto
,
T. M.
Brown
,
A.
Reale
, and
A. D.
Carlo
,
J. Polym. Sci., Part B: Polym. Phys.
49
(
9
),
638
(
2011
).
29.
R. A. J.
Janssen
and
J.
Nelson
,
Adv. Mater.
25
(
13
),
1847
(
2013
).
30.
F. B.
Kooistra
,
J.
Knol
,
F.
Kastenberg
,
L. M.
Popescu
,
W. J. H.
Verhees
,
J. M.
Kroon
, and
J. C.
Hummelen
,
Org. Lett.
9
(
4
),
551
(
2007
).
31.
E.
Klimov
,
W.
Li
,
X.
Yang
,
G. G.
Hoffmann
, and
J.
Loos
,
Macromolecules
39
(
13
),
4493
(
2006
).
32.
Y.-C.
Huang
,
Y.-C.
Liao
,
S.-S.
Li
,
M.-C.
Wu
,
C.-W.
Chen
, and
W.-F.
Su
,
Sol. Energy Mater. Sol. Cells
93
(
6–7
),
888
(
2009
).
33.
A. C.
Ferrari
and
D. M.
Basko
,
Nat. Nano
8
(
4
),
235
(
2013
).
34.
J. H.
Lee
,
S.
Cho
,
A.
Roy
,
H.-T.
Jung
, and
A. J.
Heeger
,
Appl. Phys. Lett.
96
(
16
),
163303
(
2010
).
35.
A.
Guerrero
,
T. R.
-
Sanchis
,
P. P.
Boix
, and
G.
Garcia-Belmonte
,
Org. Electron.
13
(
11
),
2326
(
2012
).
36.
B.
Qi
and
J.
Wang
,
Phys. Chem. Chem. Phys.
15
(
23
),
8972
(
2013
).
37.
C. R.
McNeill
,
Energy Environ. Sci.
5
(
2
),
5653
(
2012
).
38.
M.
Campoy-Quiles
,
T.
Ferenczi
,
T.
Agostinelli
,
P. G.
Etchegoin
,
Y.
Kim
,
T. D.
Anthopoulos
,
P. N.
Stavrinou
,
D. D. C.
Bradley
, and
J.
Nelson
,
Nature Mater.
7
(
2
),
158
(
2008
).
You do not currently have access to this content.