Controversial results have been reported for specific heat of conventional nanofluids and molten salt nanofluids. Some water-based and organic-based nanofluids showed decreases in specific heat, while molten salt-based nanofluids showed highly enhanced specific heat. In this study, we propose a distinct heat storage mechanism to explain enhanced specific heat of molten salt nanofluids and compare with the specific heat mechanism of conventional nanofluids.

1.
U. S.
Choi
,
in Developments and Applications of Non-Newtonian Flows
, edited by
D. A.
Siginer
and
H. P.
Wang
(
ASME
,
New York
,
1995
), Vols. 231/MD and 66, pp.
99
105
.
2.
P.
Keblinski
,
J. A.
Eastman
, and
D. G.
Cahill
,
Mater. Today
8
,
36
(
2005
).
3.
X.
Wang
and
A. S.
Mujumdar
,
Int. J. Therm. Sci.
46
,
1
(
2007
).
4.
J. A.
Eastman
,
S. U. S.
Choi
,
S.
Li
,
W.
Yu
, and
L. J.
Thompson
,
Appl. Phys. Lett.
78
,
718
(
2001
).
5.
J.
Eapen
,
W. C.
Williams
,
J.
Buongiorno
,
L.-W.
Hu
,
S.
Yip
,
R.
Rusconi
, and
R.
Piazza
,
Phys. Rev. Lett.
99
,
095901
(
2007
).
6.
S. K.
Das
,
N.
Putra
,
P.
Theisen
, and
W.
Roetzel
,
J. Heat Transfer
125
,
567
(
2003
).
7.
C. H.
Li
and
G. P.
Peterson
,
J. Appl. Phys.
99
,
084314
(
2006
).
8.
P.
Keblinski
and
S. R.
Phillpot
,
Int. J. Heat Mass Transfer
45
,
855
(
2002
).
9.
S. P.
Jang
and
S. U. S.
Choi
,
Appl. Phys. Lett.
84
,
4316
(
2004
).
10.
W.
Evans
,
J.
Fish
, and
P.
Keblinski
,
Appl. Phys. Lett.
88
,
093116
(
2006
).
11.
W.
Yu
and
S. U. S.
Choi
,
J. Nanopart. Res.
5
,
167
(
2003
).
12.
L.
Xue
,
P.
Keblinski
,
S. R.
Phillpot
,
S. U. S.
Choi
, and
J. A.
Eastman
,
Int. J. Heat Mass Transfer
47
,
4277
(
2004
).
13.
14.
P.
Keblinski
,
R.
Prasher
, and
J.
Eapen
,
J. Nanopart. Res.
10
,
1089
(
2008
).
15.
P. K.
Namburu
,
D. P.
Kulkarni
,
A.
Dandekar
, and
D. K.
Das
,
Micro Nano Lett.
2
,
67
(
2007
).
16.
S. Q.
Zhou
and
R.
Ni
,
Appl. Phys. Lett.
92
,
093123
(
2008
).
17.
R. S.
Vajjha
and
D. K.
Das
,
ASME J. Heat Transfer
131
,
071601
(
2009
).
18.
L.
Wang
,
Z.
Tan
,
S.
Meng
,
D.
Liang
, and
L.
Guanghai
,
J. Nanopart. Res.
3
,
483
(
2001
).
19.
B.
Wang
,
L.
Zhou
, and
X.
Peng
,
Int. J. Thermophys.
27
,
139
(
2006
).
20.
I.
Avramov
and
M.
Michailov
,
J. Phys.: Condens. Matter
20
,
295224
(
2008
).
21.
D.
Shin
and
D.
Banerjee
,
J. Heat Transfer
133
,
024501
(
2011
).
22.
D.
Shin
and
D.
Banerjee
,
Int. J. Heat Mass Transfer
54
,
1064
(
2011
).
23.
N.
Bridges
,
A.
Visser
, and
E. B.
Fox
,
Energy Fuels
25
,
4862
(
2011
).
24.
B.
Dudda
and
D.
Shin
,
Int. J. Therm. Sci.
69
,
37
(
2013
).
25.
H.
Tiznobaik
and
D.
Shin
,
Int. J. Heat Mass Transfer
57
,
542
(
2013
).
26.
D.
Shin
and
D.
Banerjee
,
J. Heat Transfer
135
,
032801
(
2013
).
27.
J.
Goldstein
,
D. E.
Newbury
,
D. C.
Joy
,
C. E.
Lyman
,
P.
Echlin
,
E.
LIfshin
,
L.
Sawyer
, and
J. R.
Michael
,
Scanning Electron Microscopy and X-ray Microanalysis
, 3rd ed. (
Springer
,
2003
).
28.
H.
Tiznobaik
and
D.
Shin
,
Appl. Phys. Lett.
102
,
173906
(
2013
).
29.
M.
Salanne
and
P. A.
Madden
,
Mol. Phys.
109
,
2299
(
2011
).
30.
B.
Chakraborty
,
J.
Wang
, and
J.
Eapen
,
Phys. Rev. E
87
,
052312
(
2013
).
You do not currently have access to this content.