Large improvements in the performance of thermoelectric materials have come from designing materials with reduced thermal conductivity. Yet as the thermal conductivity of some materials now approaches their amorphous limit, it is unclear if microstructure engineering can further improve thermoelectric performance in these cases. In this contribution, we use large data sets to examine 300 compositions in 11 families of thermoelectric materials and present a type of plot that quickly reveals the maximum possible zT that can be achieved by reducing the thermal conductivity. This plot allows researchers to quickly distinguish materials where the thermal conductivity has been optimized from those where improvement can be made. Moreover, through these large data sets we examine structure-property relationships to identify methods that decrease thermal conductivity and improve thermoelectric performance. We validate, with the data, that increasing (i) the volume of a unit cell and/or (ii) the number of atoms in the unit cell decreases the thermal conductivity of many classes of materials, without changing the electrical resistivity.

1.
G. J.
Snyder
and
E. S.
Toberer
,
Nature Mater.
7
,
105
(
2008
).
2.
M. G.
Kanatzidis
,
Chem. Mater.
22
,
648
(
2010
).
3.
K.
Yazawa
and
A.
Shakouri
,
Environ. Sci. Technol.
45
,
7548
(
2011
).
4.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C.-I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
489
,
414
(
2012
).
5.
C. J.
Vineis
,
A.
Shakouri
,
A.
Majumdar
, and
M. G.
Kanatzidis
,
Adv. Mater.
22
,
3970
(
2010
).
6.
D. G.
Cahill
,
S. K.
Watson
, and
R. O.
Pohl
,
Phys. Rev. B
46
,
6131
(
1992
).
7.
E. S.
Toberer
,
L. L.
Baranowski
, and
C.
Dames
,
Annu. Rev. Mater. Res.
42
,
179
(
2012
).
8.
M. W.
Gaultois
,
T. D.
Sparks
,
C. K. H.
Borg
,
R.
Seshadri
,
W. D.
Bonificio
, and
D. R.
Clarke
,
Chem. Mater.
25
,
2911
(
2013
).
9.
G. V.
Chester
and
A.
Thellung
,
Proc. Phys. Soc. London
77
,
1005
(
1961
).
10.
D. J.
Singh
,
Phys. Rev. B
81
,
195217
(
2010
).
11.
C.
Chiritescu
,
D. G.
Cahill
,
N.
Nguyen
,
D.
Johnson
,
A.
Bodapati
,
P.
Keblinski
, and
P.
Zschack
,
Science
315
,
351
(
2007
).
12.
J. P.
Heremans
,
V.
Jovovic
,
E. S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
, and
G. J.
Snyder
,
Science
321
,
554
(
2008
).
13.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R. G.
Yang
,
H.
Lee
,
D. Z.
Wang
,
Z. F.
Ren
,
J. P.
Fleurial
, and
P.
Gogna
,
Adv. Mater.
19
,
1043
(
2007
).
14.
G. A.
Slack
, in
CRC Handbook of Thermoelectrics
, edited by
D. M.
Rowe
(
CRC Press
,
Boca Raton, FL
,
1995
).
15.
G. S.
Nolas
,
G. A.
Slack
,
D. T.
Morelli
,
T. M.
Tritt
, and
A. C.
Ehrlich
,
J. Appl. Phys.
79
,
4002
(
1996
).
16.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
, edited by
D. G.
Crane
(
Holt
,
New York
,
1976
), p.
446
.
17.
G. A.
Slack
, in
Solid State Physics
, edited by
H.
Ehrenreich
,
F.
Seitz
, and
D.
Turnbull
(
Academic Press
,
New York
,
1979
), Vol.
34
, p.
31
.
18.
E. S.
Toberer
,
A. F.
May
, and
G. J.
Snyder
,
Chem. Mater.
22
,
624
(
2010
).
19.
J. E.
Douglas
,
C. S.
Birkel
,
M.-S.
Miao
,
C. J.
Torbet
,
G. D.
Stucky
,
T. M.
Pollock
, and
R.
Seshadri
,
Appl. Phys. Lett.
101
,
183902
(
2012
).
20.
G.
Kieslich
,
I.
Veremchuk
,
I.
Antonyshyn
,
W. G.
Zeier
,
C. S.
Birkel
,
K.
Weldert
,
C. P.
Heinrich
,
E.
Visnow
,
M.
Panthoefer
,
U.
Burkhardt
,
Y.
Grin
, and
W.
Tremel
,
Phys. Chem. Chem. Phys.
15
,
15399
(
2013
).
21.
S.
Lee
,
R. H. T.
Wilke
,
S.
Trolier-McKinstry
,
S.
Zhang
, and
C. A.
Randall
,
Appl. Phys. Lett.
96
,
031910
(
2010
).
You do not currently have access to this content.