Dynamic friction force microscopy is a valuable tool for the investigation of friction properties on the nanometer scale. The measuring technique is based on a longitudinal tip-sample modulation, leading to bending cantilever oscillations. A lock-in detection scheme is used to determine the lever response amplitude as a measure of the longitudinal tip-sample interaction. Here, we present an approach which monitors the resonance frequencies of the cantilever during an off-resonance sample modulation. Our experiments and simulations indicate that this oscillation behavior changes characteristically with increasing modulation amplitude at the static-to-sliding transition and can be used as an imaging technique.

1.
C. M.
Mate
,
G. M.
McClelland
,
R.
Erlandsson
, and
S.
Chiang
,
Phys. Rev. Lett.
59
,
1942
(
1987
).
2.
Q.
Li
,
T. E.
Tullis
,
D.
Goldsby
, and
R. W.
Carpick
,
Nature
480
,
233
(
2011
).
3.
Y.
Liu
and
I.
Szlufarska
,
Phys. Rev. Lett.
109
,
186102
(
2012
).
4.
M.
Evstigneev
,
A.
Schirmeisen
,
L.
Jansen
,
H.
Fuchs
, and
P.
Reimann
,
J. Phys.: Condens. Matter
20
,
354001
(
2008
).
5.
T.
Göddenhenrich
,
S.
Müller
, and
C.
Heiden
,
Rev. Sci. Instrum.
65
,
2870
(
1994
).
6.
K.
Yamanaka
and
E.
Tomita
,
Jpn. J. Appl. Phys., Part 1
34
,
2879
(
1995
).
7.
J.
Colchero
,
M.
Luna
, and
A. M.
Baro
,
Appl. Phys. Lett.
68
,
2896
(
1996
).
8.
H.-U.
Krotil
,
E.
Weilandt
,
T.
Stifter
,
O.
Marti
, and
S.
Hild
,
Surf. Interface Anal.
27
,
341
(
1999
).
9.
L.
Huang
and
C.
Su
,
Ultramicroscopy
100
,
277
(
2004
).
10.
A.
Spychalski-Merle
,
K.
Krischker
,
T.
Göddenhenrich
, and
C.
Heiden
,
Appl. Phys. Lett.
77
,
501
(
2000
).
11.
M.
Reinstädtler
,
U.
Rabe
,
V.
Scherer
,
U.
Hartmann
,
A.
Goldade
,
B.
Bhushan
, and
W.
Arnold
,
Appl. Phys. Lett.
82
,
2604
(
2003
).
12.
T.
Kawagishi
,
A.
Kato
,
Y.
Hoshi
, and
H.
Kawakatsu
,
Ultramicroscopy
91
,
37
(
2002
).
13.
14.
P.
Zahl
,
M.
Bierkandt
,
S.
Schröder
, and
A.
Klust
,
Rev. Sci. Instrum.
74
,
1222
(
2003
).
15.
J. E.
Sader
,
Rev. Sci. Instrum.
74
,
2438
(
2003
).
16.
A. J.
McMillan
,
J. Sound Vibrat.
205
,
323
(
1997
).
17.
O.
Zwörner
,
H.
Hölscher
,
U. D.
Schwarz
, and
R.
Wiesendanger
,
Appl. Phys. A
66
,
S263
(
1998
).
18.
I. R.
Gatland
,
Am. J. Phys.
62
,
259
(
1994
).
19.
See supplementary material at http://dx.doi.org/10.1063/1.4868981 for integer harmonics in non-linear cantilever oscillations caused by an off-resonance excitation.
20.
U. D.
Schwarz
,
O.
Zwörner
,
P.
Köster
, and
R.
Wiesendanger
,
Phys. Rev. B
56
,
6987
(
1997
).
21.
M.
Sepioni
,
R. R.
Nair
,
I.-L.
Tsai
,
A. K.
Geim
, and
I. V.
Grigorieva
,
EPL
97
,
47001
(
2012
).
22.
E.
Weilandt
,
A.
Menck
, and
O.
Marti
,
Surf. Interface Anal.
23
,
428
(
1995
).
23.
T.
Müller
,
M.
Lohrmann
,
T.
Kässer
,
O.
Marti
,
J.
Mlynek
, and
G.
Krausch
,
Phys. Rev. Lett.
79
,
5066
(
1997
).
24.
H.
Hölscher
,
D.
Ebeling
, and
U.
Schwarz
,
Phys. Rev. Lett.
101
,
246105
(
2008
).
25.
M.
Dienwiebel
,
G.
Verhoeven
,
N.
Pradeep
,
J.
Frenken
,
J.
Heimberg
, and
H.
Zandbergen
,
Phys. Rev. Lett.
92
,
126101
(
2004
).
26.
E.
Gnecco
,
O. Y.
Fajardo
,
C. M.
Pina
, and
J. J.
Mazo
,
Tribol. Lett.
48
,
33
(
2012
).

Supplementary Material

You do not currently have access to this content.