We present a transparent single-friction-surface triboelectric generator (STEG) employing human body as the conduit, making the applications of STEG in portable electronics much more practical and leading to a significant output improvement. The STEG with micro-patterned polydimethylsiloxane surface achieved an output voltage of over 200 V with a current density of 4.7 μA/cm2. With human body conduit, the output current increased by 39% and the amount of charge that transferred increased by 34% compared to the results with grounded electrode. A larger increment of 210% and 81% was obtained in the case of STEG with a large-size flat polyethylene terephthalate surface.

2.
P. D.
Mitcheson
,
E. M.
Yeatman
,
G. K.
Rao
,
A. S.
Holmes
, and
T. C.
Green
,
Proc. IEEE
96
,
1457
(
2008
).
3.
Z. L.
Wang
and
J. H.
Song
,
Science
312
,
242
(
2006
).
4.
C.
Chang
,
V. H.
Tran
,
J. B.
Wang
,
Y. K.
Fuh
, and
L. W.
Lin
,
Nano Lett.
10
,
726
(
2010
).
5.
J. D.
Chen
,
D.
Chen
,
T.
Yuan
, and
X.
Chen
,
Appl. Phys. Lett.
100
,
213509
(
2012
).
6.
B.
Yang
,
C.
Lee
,
W. F.
Xiang
,
J.
Xie
,
J. H.
He
,
R. K.
Kotlanka
,
S. P.
Low
, and
H. H.
Feng
,
J. Micromech. Microeng.
19
,
035001
(
2009
).
7.
Y.
Suzuki
,
IEEJ Trans. Electr. Electron. Eng.
6
,
101
(
2011
).
8.
L. G. W.
Tvedt
,
D. S.
Nguyen
, and
E.
Halvorsen
,
J. Microelectromech. Syst.
19
,
305
(
2010
).
9.
H. T.
Baytekin
,
A. Z.
Patashinski
,
M.
Branicki
,
B.
Baytekin
,
S.
Soh
, and
B. A.
Grzybowski
,
Science
333
,
308
(
2011
).
12.
B.
Meng
,
W.
Tang
,
Z. H.
Too
,
X. S.
Zhang
,
M. D.
Han
,
W.
Liu
, and
H. X.
Zhang
,
Energy Environ. Sci.
6
,
3235
(
2013
).
13.
F. R.
Fan
,
Z. Q.
Tian
, and
Z. L.
Wang
,
Nano Energy
1
,
328
(
2012
).
14.
S. H.
Wang
,
L.
Lin
, and
Z. L.
Wang
,
Nano Lett.
12
,
6339
(
2012
).
15.
X. S.
Zhang
,
M. D.
Han
,
R. X.
Wang
,
F. Y.
Zhu
,
Z. H.
Li
,
W.
Wang
, and
H. X.
Zhang
,
Nano Lett.
13
,
1168
(
2013
).
16.
G.
Zhu
,
Z. H.
Lin
,
Q. S.
Jing
,
P.
Bai
,
C. F.
Pan
,
Y.
Yang
,
Y. S.
Zhou
, and
Z. L.
Wang
,
Nano Lett.
13
,
847
(
2013
).
17.
G.
Zhu
,
J.
Chen
,
Y.
Liu
,
P.
Bai
,
Y. S.
Zhou
,
Q.
Jing
,
C.
Pan
, and
Z. L.
Wang
,
Nano Lett.
13
,
2282
(
2013
).
18.
S.
Wang
,
L.
Lin
,
Y.
Xie
,
Q.
Jing
,
S.
Niu
, and
Z. L.
Wang
,
Nano Lett.
13
,
2226
(
2013
).
19.
Y.
Yang
,
H.
Zhang
,
J.
Chen
,
Q.
Jing
,
Y. S.
Zhou
,
X.
Wen
, and
Z. L.
Wang
,
ACS Nano
7
,
7342
(
2013
).
20.
Y.
Yang
,
Y. S.
Zhou
,
H.
Zhang
,
Y.
Liu
,
S.
Lee
, and
Z. L.
Wang
,
Adv. Mater.
25
,
6594
(
2013
).
21.
Y.
Yang
,
H.
Zhang
,
Z. H.
Lin
,
Y. S.
Zhou
,
Q.
Jing
,
Y.
Su
,
J.
Yang
,
J.
Chen
,
C.
Hu
, and
Z. L.
Wang
,
ACS Nano
7
,
9213
(
2013
).
22.
W.
Tang
,
B.
Meng
, and
H. X.
Zhang
,
Nano Energy
2
,
1164
(
2013
).
23.
B.
Meng
,
W.
Tang
,
X. S.
Zhang
,
M. D.
Han
,
W.
Liu
, and
H. X.
Zhang
,
Nano Energy
2
,
1101
(
2013
).
24.
S.
Niu
,
S.
Wang
,
L.
Lin
,
Y.
Liu
,
Y. S.
Zhou
,
Y.
Hu
, and
Z. L.
Wang
,
Energy Environ. Sci.
6
,
3576
(
2013
).
25.
S.
Roundy
,
P. K.
Wright
, and
K. S. J.
Pister
, in
Proceedings of the IMECE2002
, New Orleans (
2002
), p.
34309
.
26.
M. A.
Kelly
,
G. E.
Servais
, and
T. V.
Pfaffenbach
, in
Proceedings of the 19th International Symposium for Testing and Failure Analysis
, Los Angeles (
1993
), pp.
167
173
.
27.
See supplementary material at http://dx.doi.org/10.1063/1.4868130 for the difference in performance when the reference electrode is grounded and replaced by a large conductor plate.

Supplementary Material

You do not currently have access to this content.