Carbon nanotube nanogaps have been used to contact individual organic molecules. However, the reliable fabrication of a truly nanometer-sized gap remains a challenge. We use helium ion beam lithography to sputter nanogaps of only (2.8 ± 0.6) nm size into single metallic carbon nanotubes embedded in a device geometry. The high reproducibility of the gap size formation provides a reliable nanogap electrode testbed for contacting small organic molecules. To demonstrate the functionality of these nanogap electrodes, we integrate oligo(phenylene ethynylene) molecular rods, and measure resistance before and after gap formation and with and without contacted molecules.

1.
P.
Qi
,
A.
Javey
,
M.
Rolandi
,
Q.
Wang
,
E.
Yenilmez
, and
H.
Dai
,
J. Am. Chem. Soc.
126
,
11774
(
2004
).
2.
C. W.
Marquardt
,
S.
Grunder
,
A.
Błaszczyk
,
S.
Dehm
,
F.
Hennrich
,
H. v.
Löhneysen
,
M.
Mayor
, and
R.
Krupke
,
Nat. Nanotechnol.
5
,
863
867
(
2010
).
3.
F.
Xiong
,
A. D.
Liao
,
D.
Estrada
, and
E.
Pop
,
Science
332
,
568
570
(
2011
).
4.
C.
Thiele
,
M.
Engel
,
F.
Hennrich
,
M. M.
Kappes
,
K.-P.
Johnsen
,
C. G.
Frase
,
H. v.
Löhneysen
, and
R.
Krupke
,
Appl. Phys. Lett.
99
,
173105
(
2011
).
5.
S.
Lebedkin
,
P.
Schweiss
,
B.
Renker
,
S.
Malik
,
F.
Hennrich
,
M.
Neumaier
,
C.
Stoermer
, and
M. M.
Kappes
,
Carbon
40
,
417
423
(
2002
).
6.
K.
Moshammer
,
F.
Hennrich
, and
M. M.
Kappes
,
Nano Res.
2
,
599
606
(
2009
).
7.
A.
Vijayaraghavan
,
S.
Blatt
,
D.
Weissenberger
,
M.
Oron-Carl
,
F.
Hennrich
,
D.
Gerthsen
,
H.
Hahn
, and
R.
Krupke
,
Nano Lett.
7
,
1556
(
2007
).
8.
D. C.
Bell
,
Microsc. Microanal.
15
,
147
(
2009
).
9.
R.
Hill
,
J. A.
Notte
, and
L.
Scipioni
, in
Advances in Imaging and Electron Physics
, edited by
P. W.
Hawkes
(
Elsevier
,
2012
), Vol.
170
, pp.
65
148
.
10.
D.
Bell
,
M.
Lemme
,
L.
Stern
,
J.
Williams
, and
C.
Marcus
,
Nanotechnology
20
,
455301
(
2009
).
11.
M.
Lemme
,
D.
Bell
,
J.
Williams
,
L.
Stern
,
B.
Baugher
,
P.
Jarillo-Herrero
, and
C.
Marcus
,
ACS Nano
3
,
2674
(
2009
).
12.
D.
Fox
,
Y. B.
Zhou
,
A.
O'Neill
,
S.
Kumar
,
J. J.
Wang
,
J. N.
Coleman
,
G. S.
Duesberg
,
J. F.
Donegan
, and
H. Z.
Zhang
,
Nanotechnology
24
,
335702
(
2013
).
13.
M. M.
Marshall
,
J.
Yang
, and
A. R.
Hall
,
Scanning
34
,
101
(
2012
).
14.
O.
Scholder
,
K.
Jefimovs
,
I.
Shorubalko
,
C.
Hafner
,
U.
Sennhauser
, and
G.-L.
Bona
,
Nanotechnology
24
,
395301
(
2013
).
15.
A.
Vijayaraghavan
,
S.
Blatt
,
C.
Marquardt
,
S.
Dehm
,
R.
Wahi
,
F.
Hennrich
, and
R.
Krupke
,
Nano Res.
1
,
321
(
2008
).
16.
W.
Kim
,
A.
Javey
,
R.
Tu
,
J.
Cao
,
Q.
Wang
, and
H.
Dai
,
Appl. Phys. Lett.
87
,
173101
(
2005
).
17.
S.
Gotovac
,
Y.
Hattori
,
D.
Noguchi
,
J.-I.
Miyamoto
,
M.
Kanamaru
,
S.
Utsumi
,
H.
Kanoh
, and
K.
Kaneko
,
J. Phys. Chem. B
110
,
16219
(
2006
).
18.
See supplementary material at http://dx.doi.org/10.1063/1.4868097 for full synthetic details.
19.
S.
Grunder
,
D.
Muñoz Torres
,
C.
Marquardt
,
A.
Blaszczyk
,
R.
Krupke
, and
M.
Mayor
,
Eur. J. Org. Chem.
2011
,
478
(
2011
).
20.
Q.
Lu
,
K.
Liu
,
H.
Zhang
,
Z.
Du
,
X.
Wang
, and
F.
Wang
,
ACS Nano
3
,
3861
(
2009
).
21.
L.
Venkataraman
,
J. E.
Klare
,
C.
Nuckolls
,
M. S.
Hybertsen
, and
M. L.
Steigerwald
,
Nature
442
,
904
(
2006
).

Supplementary Material

You do not currently have access to this content.