We discuss possibilities of adjustment of a threshold voltage VT in normally off GaN high-electron mobility transistors (HEMTs) without compromising a maximal drain current IDSmax. Techniques of a low power plasma or thermal oxidation of 2-nm thick AlN cap over 3-nm thick AlGaN barrier are developed and calibrated for a thorough oxidation of the cap with a minimal density of surface donors at the inherent oxide-semiconductor interface. It has been shown that while a thermal oxidation technique leads to the channel and/or interface degradation, low density of surface donors and scalability of VT with additionally overgrown Al2O3 may be obtained for plasma oxidized HEMTs. With 10-nm thick Al2O3 deposited at 100 °C by atomic-layer deposition, we obtained VT of 1.6 V and IDSmax of 0.48 A/mm at a gate voltage of VGS = 8 V. Density of surface donors was estimated to be about 1.2 × 1013 cm−2, leaving most of the negative polarization charge at the semiconductor surface uncompensated. Further reduction of surface donors may be needed for even higher VT.

1.
T.
Mizutani
,
M.
Ito
,
S.
Kishimoto
, and
F.
Nakamura
,
IEEE Electron Device Lett.
28
,
549
(
2007
).
2.
C. Y.
Chang
,
S. J.
Pearton
,
C. F.
Lo
,
F.
Ren
,
I. I.
Kravchenko
,
A. M.
Dabiran
,
A. M.
Wowchak
,
B.
Cui
, and
P. P.
Chow
,
Appl. Phys. Lett.
94
,
263505
(
2009
).
3.
J.
Durluyn
,
M.
Van Hove
,
D.
Visalli
,
A.
Lorenz
,
D.
Marcon
,
P.
Srivastava
,
K.
Geens
,
B.
Sijmus
,
J.
Viaene
,
X.
Kang
,
J.
Das
,
F.
Medjdoub
,
K.
Cheng
,
S.
Degroote
,
M.
Leys
,
G.
Borghs
, and
M.
Germain
,
Tech. Dig. -Int. Electron Device Meet.
2009
,
157
.
4.
F.
Medjdoub
,
M.
Van Hove
,
K.
Cheng
,
D.
Marcon
,
M.
Leys
, and
S.
Decoutere
,
IEEE Electron Device Lett.
31
,
948
(
2010
).
5.
N.
Harada
,
Y.
Hori
,
N.
Azumaishi
,
K.
Ohi
, and
T.
Hashizume
,
Appl. Phys. Express
4
,
021002
(
2011
).
6.
M.
Ťapajna
and
J.
Kuzmik
,
Appl. Phys. Lett.
100
,
113509
(
2012
).
7.
Y.
Zhang
,
M.
Sun
,
S. J.
Joglekar
,
T.
Fujishima
, and
T.
Palacios
,
Appl. Phys. Lett.
103
,
033524
(
2013
).
8.
M.
Jurkovič
,
D.
Gregušová
,
V.
Palankovski
,
Š.
Haščík
,
M.
Blaho
,
K.
Čičo
,
K.
Fröhlich
,
J.-F.
Carlin
,
N.
Grandjean
, and
J.
Kuzmik
,
IEEE Electron Device Lett.
34
,
432
(
2013
).
9.
Y.
Hayashi
,
S.
Sugiura
,
S.
Kishimoto
, and
T.
Mizutani
,
Solid-State Electron.
54
,
1367
(
2010
).
10.
Z. H.
Feng
,
R.
Zhou
,
S. Y.
Xie
,
J. Y.
Yin
,
J. X.
Fang
,
B.
Liu
,
W.
Zhou
,
K. J.
Chen
, and
S. J.
Cai
,
IEEE Electron Device Lett.
31
,
1386
(
2010
).
11.
S.
Ganguly
,
J.
Verma
,
G.
Li
,
T.
Zimmermann
,
H.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
99
,
193504
(
2011
).
12.
S.
Huang
,
Q.
Jiang
,
S.
Yang
,
Z.
Tang
, and
K. J.
Chen
,
IEEE Electron Device Lett.
34
,
193
(
2013
).
13.
I.-H.
Tan
,
G. L.
Snider
, and
E. L.
Hu
,
J. Appl. Phys.
68
,
4071
(
1990
).
14.
O.
Ambacher
,
B.
Foutz
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
A. J.
Sierakowski
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
,
A.
Mitchell
, and
M.
Stutzmann
,
J. Appl. Phys.
87
,
334
(
2000
).
15.
J.
Robertson
and
B.
Falabretti
,
J. Appl. Phys.
100
,
014111
(
2006
).
16.
M.
Blaho
,
D.
Gregušová
,
M.
Jurkovič
,
Š.
Haščík
,
J.
Fedor
,
P.
Kordoš
,
K.
Fröhlich
,
F.
Brunner
,
M.
Cho
,
J.
Würfl
, and
J.
Kuzmik
,
Microelectron. Eng.
112
,
204
(
2013
).
17.
Ch.
Mizue
,
Y.
Hori
,
M.
Miczek
, and
T.
Hashizume
,
Jpn. J. Appl. Phys.
50
,
021001
(
2011
).
You do not currently have access to this content.