The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summarized in two simple rules that can thus become a useful tool for designing magnetic devices.

1.
R. P.
Cowburn
,
D. K.
Koltsov
,
A. O.
Adeyeye
, and
M. E.
Welland
,
Phys. Rev. Lett.
83
,
1042
(
1999
).
2.
T.
Shinjo
,
T.
Okuno
,
R.
Hassdorf
,
K.
Shigeto
, and
T.
Ono
,
Science
289
,
930
932
(
2000
).
3.
S.
Bohlens
,
B.
Krüger
,
A.
Drews
,
M.
Bolte
,
G.
Meier
, and
D.
Pfannkuche
,
Appl. Phys. Lett.
93
,
142508
(
2008
);
K.
Nakano
,
D.
Chiba
,
N.
Ohshima
,
S.
Kasai
,
T.
Sato
,
Y.
Nakatani
,
K.
Sekiguchi
,
K.
Kobayashi
, and
T.
Ono
,
Appl. Phys. Lett.
99
,
262505
(
2011
);
M.
Goto
,
H.
Hata
,
A.
Yamaguchi
,
Y.
Nakatani
,
T.
Yamaoka
,
Y.
Nozaki
, and
H.
Miyajima
,
Phys. Rev. B
84
,
064406
(
2011
).
4.
V.
Uhlir
,
M.
Urbanek
,
L.
Hladik
,
J.
Spousta
,
M.-Y.
Im
,
P.
Fischer
,
N.
Eibagi
,
J. J.
Kan
,
E. E.
Fullerton
, and
T.
Sikola
,
Nat. Nanotechnol.
8
,
341
(
2013
).
5.
R.
Hertel
,
S.
Gliga
,
M.
Fähnle
, and
C. M.
Schneider
,
Phys. Rev. Lett.
98
,
117201
(
2007
);
[PubMed]
Y.
Liu
,
S.
Gliga
,
R.
Hertel
, and
C. M.
Schneider
,
Appl. Phys. Lett.
91
,
112501
(
2007
);
K.
Yamada
,
S.
Kasai
,
Y.
Nakatani
,
K.
Kobayashi
, and
T.
Ono
,
Appl. Phys. Lett.
93
,
152502
(
2008
).
6.
B.
Van Waeyenberge
,
A.
Puzic
,
H.
Stoll
,
K. W.
Chou
,
T.
Tyliszczak
,
R.
Hertel
,
M.
Fähnle
,
H.
Brückl
,
K.
Rott
,
G.
Reiss
,
I.
Neudecker
,
D.
Weiss
,
C. H.
Back
, and
G.
Schütz
,
Nature
444
,
461
464
(
2006
).
7.
K.
Yamada
,
S.
Kasai
,
Y.
Nakatani
,
K.
Kobayashi
,
H.
Kohno
,
A.
Thiaville
, and
T.
Ono
,
Nature Mater.
6
,
270
273
(
2007
).
8.
K. Y.
Guslienko
,
K.-S.
Lee
, and
S.-K.
Kim
,
Phys. Rev. Lett.
100
,
027203
(
2008
).
9.
M.
Kammerer
,
M.
Weigand
,
M.
Curcic
,
M.
Noske
,
M.
Sproll
,
A.
Vansteenkiste
,
B.
Van Waeyenberge
,
H.
Stoll
,
G.
Woltersdorf
,
C. H.
Back
, and
G.
Schuetz
,
Nat. Commun.
2
,
279
(
2011
).
10.
K. Y.
Guslienko
,
A. N.
Slavin
,
V.
Tiberkevich
, and
S.-K.
Kim
,
Phys. Rev. Lett.
101
,
247203
(
2008
).
11.
S.
Yakata
,
M.
Miyata
,
S.
Nonoguchi
,
H.
Wada
, and
T.
Kimura
,
Appl. Phys. Lett.
97
,
222503
(
2010
).
12.
N. M.
Vargas
,
S.
Allende
,
B.
Leighton
,
J.
Escrig
,
J.
Mejia-Lopez
,
D.
Altbir
, and
Ivan K.
Schuller
,
J. Appl. Phys.
109
,
073907
(
2011
).
13.
M.
Jaafar
,
R.
Yanes
,
D.
Perez de Lara
,
O.
Chubykalo-Fesenko
,
A.
Asenjo
,
E. M.
Gonzalez
,
J. V.
Anguita
,
M.
Vazquez
, and
J. L.
Vicent
,
Phys. Rev. B
81
,
054439
(
2010
).
14.
V.
Cambel
and
G.
Karapetrov
,
Phys. Rev. B
84
,
014424
(
2011
).
15.
Z.
Zhong
,
H.
Zhang
,
X.
Tang
,
Y.
Jing
,
L.
Jia
, and
S.
Liu
,
J. Magn. Magn. Mater
321
,
2345
2349
(
2009
).
16.
M.
Konoto
,
T.
Yamada
,
K.
Koike
,
H.
Akoh
,
T.
Arima
, and
Y.
Tokura
,
J. Appl. Phys.
103
,
023904
(
2008
).
17.
Y.
Gaididei
,
D. D.
Sheka
, and
F. G.
Mertens
,
Appl. Phys. Lett.
92
,
012503
(
2008
).
18.
S.
Yakata
,
M.
Miyata
,
S.
Honda
,
H.
Itoh
,
H.
Wada
, and
T.
Kimura
,
Appl. Phys. Lett.
99
,
242507
(
2011
).
19.
G.
Shimon
,
A. O.
Adeyeye
, and
C. A.
Ross
,
Phys. Rev. B
87
,
214422
(
2013
).
20.
W. F.
Brown
, Jr.
,
Magnetostatic Principles in Ferromagnetism
(
North-Holland
,
Amsterdam
,
1962
).
21.
J. E.
Miltat
and
M. J.
Donahue
,
Numerical Micromagnetics: Finite Difference Methods
(
NIST
,
2007
);
H.
Kronmüller
and
S. S. P.
Parkin
,
Handbook of Magnetism and Advanced Magnetic Materials
(
Wiley
,
2007
).
22.
H.
Kronmüller
and
M.
Fähnle
,
Micromagnetism and the Microstructure of Ferromagnetic Solids
(
Cambridge University Press
,
Cambridge
,
2003
).
23.
A.
Aharoni
,
Introduction to the Theory of Ferromagnetism
(
Oxford University Press
,
Oxford
,
1996
).
24.
H.
Fukushima
,
Y.
Nakatani
, and
N.
Hayashi
,
IEEE Trans. Magn.
34
,
193
(
1998
).
25.
Our sample is also discretized into a second coarser uniform array of large cubic cells, where each coarse cell has 3 × 3 × 3 small micromagnetic ones. The magnetostatic interaction between two micromagnetic cells is obtained from the averaged magnetization approximation of their coarse cells if they are, at least, neighbors of second order.
26.
M. J.
Donahue
and
D. G.
Porter
,
Physica B
343
,
177
(
2004
).
27.
W.
Rave
,
K.
Ramstock
, and
A.
Hubert
,
J. Magn. Magn. Mater.
183
,
329
(
1998
);
You do not currently have access to this content.