All bulk metallic glasses exhibit a large and almost universal elastic strain limit. Here, we show that the magnitude of the yield strain of the glass state can be quantitatively derived from a characteristic property of the flow state typical in running shear bands (the root cause of yielding). The strain in the shear flow is mostly plastic, but associated with it there is an effective elastic atomic strain. The latter is almost identical for very different model systems in our molecular dynamics simulations, such that the corresponding yield strain is universal at any given homologous temperature.

1.
A. L.
Greer
and
E.
Ma
,
MRS Bull.
32
,
611
(
2007
).
2.
R.
Busch
,
J.
Schroers
, and
W. H.
Wang
,
MRS Bull.
32
,
620
(
2007
).
3.
A.
Inoue
and
N.
Nishiyama
,
MRS Bull.
32
,
651
(
2007
).
4.
H. W.
Sheng
,
W. K.
Luo
,
F. M.
Alamgir
,
J. M.
Bai
, and
E.
Ma
,
Nature (London)
439
,
419
(
2006
).
5.
C. A.
Schuh
,
T. C.
Hufnagel
, and
U.
Ramamurty
,
Acta Mater.
55
,
4067
(
2007
).
6.
W. H.
Wang
,
Prog. Mater. Sci.
57
,
487
656
(
2012
).
7.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
, 2nd ed. (
Wiley
,
New York
,
1982
).
8.
W. L
Johnson
and
K.
Samwer
,
Phys. Rev. Lett.
95
,
195501
(
2005
).
9.
M. W
Chen
,
Annu. Rev. Mater. Res.
38
,
445
468
(
2008
).
10.
Y. H.
Liu
,
C. T.
Liu
,
W. H.
Wang
,
A.
Inoue
,
T.
Sakurai
, and
M. W.
Chen
,
Phys. Rev. Lett.
103
,
065504
(
2009
).
11.
F.
Shimizu
,
S.
Ogata
, and
J.
Li
,
Acta Mater.
54
,
4293
4298
(
2006
).
12.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
13.
J.
Ding
,
Y. Q.
Cheng
, and
E.
Ma
,
Acta Mater.
61
,
3130
3140
(
2013
).
14.
Y. Q.
Cheng
,
E.
Ma
, and
H. W.
Sheng
,
Phys. Rev. Lett.
102
,
245501
(
2009
).
15.
G.
Wahnstrom
,
Phys. Rev. A
44
,
3752
(
1991
).
16.
V. A.
Levashov
,
T.
Egami
,
R. S.
Aga
, and
J. R.
Morris
,
Phys. Rev. B
78
,
064205
(
2008
).
17.
D. J.
Evans
and
G.
Morris
,
Statistical Mechanics of Nonequilibrium Liquids
(
Cambridge University Press
,
New York
,
2008
).
18.
J.
Ding
,
Y. Q.
Cheng
, and
E.
Ma
,
Acta Mater.
61
,
4474
4480
(
2013
).
19.
C. L.
Rountree
,
D.
Vandembroucq
,
M.
Talamali
,
E.
Bouchaud
, and
S.
Roux
,
Phys. Rev. Lett.
102
,
195501
(
2009
).
20.
W.
Dmowski
,
T.
Iwashita
,
C.-P.
Chuang
,
J.
Almer
, and
T.
Egami
,
Phys. Rev. Lett.
105
,
205502
(
2010
).
21.
T.
Egami
,
Prog. Mater. Sci.
56
,
637
653
(
2011
).
22.
P. F.
Guan
,
M. W.
Chen
, and
T.
Egami
,
Phys. Rev. Lett.
104
,
205701
(
2010
).
23.
T.
Iwashita
and
T.
Egami
,
Phys. Rev. Lett.
108
,
196001
(
2012
).
24.
See supplementary material at http://dx.doi.org/10.1063/1.4861606 for more discussions.
25.
J. M.
Brader
,
T.
Voigtmann
,
M.
Fuch
,
R. G.
Larson
, and
M. E.
Cates
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
15186
(
2009
).
26.
T.
Divoux
,
D.
Tamarii
,
C.
Barentin
, and
S.
Manneville
,
Phys. Rev. Lett.
104
,
208301
(
2010
).
27.
S. X.
Song
and
T. G.
Nieh
,
Intermetallics
17
,
762
(
2009
).
28.
A. L.
Greer
,
Y. Q.
Cheng
, and
E.
Ma
,
Mater. Sci. Eng., R
74
,
71
132
(
2013
).
29.
M.
Fuchs
and
M. E.
Cates
,
Phys. Rev. Lett.
89
,
248304
(
2002
).
30.
T.
Voigtmann
,
Eur. Phys. J. E
34
,
106
(
2011
).
31.
Y. Q.
Cheng
and
E.
Ma
,
Phys. Rev. B
80
,
064104
(
2009
).
32.
S. G.
Mayr
,
Phys. Rev. B
79
,
060201
R
(
2009
).

Supplementary Material

You do not currently have access to this content.