All bulk metallic glasses exhibit a large and almost universal elastic strain limit. Here, we show that the magnitude of the yield strain of the glass state can be quantitatively derived from a characteristic property of the flow state typical in running shear bands (the root cause of yielding). The strain in the shear flow is mostly plastic, but associated with it there is an effective elastic atomic strain. The latter is almost identical for very different model systems in our molecular dynamics simulations, such that the corresponding yield strain is universal at any given homologous temperature.
REFERENCES
1.
A. L.
Greer
and E.
Ma
, MRS Bull.
32
, 611
(2007
).2.
R.
Busch
, J.
Schroers
, and W. H.
Wang
, MRS Bull.
32
, 620
(2007
).3.
A.
Inoue
and N.
Nishiyama
, MRS Bull.
32
, 651
(2007
).4.
H. W.
Sheng
, W. K.
Luo
, F. M.
Alamgir
, J. M.
Bai
, and E.
Ma
, Nature (London)
439
, 419
(2006
).5.
C. A.
Schuh
, T. C.
Hufnagel
, and U.
Ramamurty
, Acta Mater.
55
, 4067
(2007
).6.
W. H.
Wang
, Prog. Mater. Sci.
57
, 487
–656
(2012
).7.
8.
W. L
Johnson
and K.
Samwer
, Phys. Rev. Lett.
95
, 195501
(2005
).9.
M. W
Chen
, Annu. Rev. Mater. Res.
38
, 445
–468
(2008
).10.
Y. H.
Liu
, C. T.
Liu
, W. H.
Wang
, A.
Inoue
, T.
Sakurai
, and M. W.
Chen
, Phys. Rev. Lett.
103
, 065504
(2009
).11.
F.
Shimizu
, S.
Ogata
, and J.
Li
, Acta Mater.
54
, 4293
–4298
(2006
).12.
M. P.
Allen
and D. J.
Tildesley
, Computer Simulation of Liquids
(Clarendon Press
, Oxford
, 1987
).13.
J.
Ding
, Y. Q.
Cheng
, and E.
Ma
, Acta Mater.
61
, 3130
–3140
(2013
).14.
Y. Q.
Cheng
, E.
Ma
, and H. W.
Sheng
, Phys. Rev. Lett.
102
, 245501
(2009
).15.
G.
Wahnstrom
, Phys. Rev. A
44
, 3752
(1991
).16.
V. A.
Levashov
, T.
Egami
, R. S.
Aga
, and J. R.
Morris
, Phys. Rev. B
78
, 064205
(2008
).17.
D. J.
Evans
and G.
Morris
, Statistical Mechanics of Nonequilibrium Liquids
(Cambridge University Press
, New York
, 2008
).18.
J.
Ding
, Y. Q.
Cheng
, and E.
Ma
, Acta Mater.
61
, 4474
–4480
(2013
).19.
C. L.
Rountree
, D.
Vandembroucq
, M.
Talamali
, E.
Bouchaud
, and S.
Roux
, Phys. Rev. Lett.
102
, 195501
(2009
).20.
W.
Dmowski
, T.
Iwashita
, C.-P.
Chuang
, J.
Almer
, and T.
Egami
, Phys. Rev. Lett.
105
, 205502
(2010
).21.
T.
Egami
, Prog. Mater. Sci.
56
, 637
–653
(2011
).22.
P. F.
Guan
, M. W.
Chen
, and T.
Egami
, Phys. Rev. Lett.
104
, 205701
(2010
).23.
T.
Iwashita
and T.
Egami
, Phys. Rev. Lett.
108
, 196001
(2012
).24.
See supplementary material at http://dx.doi.org/10.1063/1.4861606 for more discussions.
25.
J. M.
Brader
, T.
Voigtmann
, M.
Fuch
, R. G.
Larson
, and M. E.
Cates
, Proc. Natl. Acad. Sci. U.S.A.
106
, 15186
(2009
).26.
T.
Divoux
, D.
Tamarii
, C.
Barentin
, and S.
Manneville
, Phys. Rev. Lett.
104
, 208301
(2010
).27.
S. X.
Song
and T. G.
Nieh
, Intermetallics
17
, 762
(2009
).28.
A. L.
Greer
, Y. Q.
Cheng
, and E.
Ma
, Mater. Sci. Eng., R
74
, 71
–132
(2013
).29.
M.
Fuchs
and M. E.
Cates
, Phys. Rev. Lett.
89
, 248304
(2002
).30.
T.
Voigtmann
, Eur. Phys. J. E
34
, 106
(2011
).31.
Y. Q.
Cheng
and E.
Ma
, Phys. Rev. B
80
, 064104
(2009
).32.
S. G.
Mayr
, Phys. Rev. B
79
, 060201
–R
(2009
).© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.