We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55–1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.

1.
J.
Veres
,
S. D.
Ogier
,
S. W.
Leeming
,
D. C.
Cupertino
, and
S. M.
Khaffaf
,
Adv. Funct. Mater.
13
(
3
),
199
204
(
2003
).
2.
Y.
Xu
,
Y.
Tsai
, and
K. N.
Tu
,
Appl. Phys. Lett.
75
(
6
),
853
855
(
1999
);
D.
Shamiryan
,
T.
Abell
,
F.
Iacopi
, and
K.
Maex
,
Mater. Today
7
(
1
),
34
39
(
2004
);
S.
Walheim
,
E.
Schäffer
,
J.
Mlynek
, and
U.
Steiner
,
Science
283
,
520
522
(
1999
).
[PubMed]
3.
H.
Li
,
M.
Eddaoudi
,
M.
O'Keeffe
, and
O. M.
Yaghi
,
Nature
402
(
6759
),
276
279
(
1999
);
O. M.
Yaghi
,
G. M.
Li
, and
H. L.
Li
,
Nature
378
(
6558
),
703
706
(
1995
).
4.
G.
Ferey
and
C.
Serre
,
Chem. Soc. Rev.
38
(
5
),
1380
1399
(
2009
).
5.
O.
Shekhah
,
J.
Liu
,
R. A.
Fischer
, and
Ch.
Wöll
,
Chem. Soc. Rev.
40
,
1081
1106
(
2011
).
6.
J.
Liu
,
B.
Lukose
,
O.
Shekhah
,
H. K.
Arslan
,
P.
Weidler
,
H.
Gliemann
,
S.
Bräse
,
S.
Grosjean
,
A.
Godt
,
X.
Feng
,
K.
Müllen
,
I.-B.
Magdau
,
T.
Heine
, and
Ch.
Wöll
,
Sci. Rep.
2
,
921
, (
2012
).
7.
H. X.
Deng
,
S.
Grunder
,
K. E.
Cordova
,
C.
Valente
,
H.
Furukawa
,
M.
Hmadeh
,
F.
Gandara
,
A. C.
Whalley
,
Z.
Liu
,
S.
Asahina
,
H.
Kazumori
,
M.
O'Keeffe
,
O.
Terasaki
,
J. F.
Stoddart
, and
O. M.
Yaghi
,
Science
336
(
6084
),
1018
1023
(
2012
).
8.
K.
Zagorodniy
,
G.
Seifert
, and
H.
Hermann
,
Appl. Phys. Lett.
97
(
25
),
251905
(
2010
).
9.
S.
Eslava
,
L.
Zhang
,
S.
Esconjauregui
,
J.
Yang
,
K.
Vanstreels
,
M. R.
Baklanov
, and
E.
Saiz
,
Chem. Mater.
25
,
27
33
(
2013
).
10.
O.
Shekhah
,
H.
Wang
,
S.
Kowarik
,
F.
Schreiber
,
M.
Paulus
,
M.
Tolan
,
C.
Sternemann
,
F.
Evers
,
D.
Zacher
,
R. A.
Fischer
, and
Ch.
Wöll
,
J. Am. Chem. Soc.
129
,
15118
15119
(
2007
).
11.
S.
Bundschuh
,
O.
Kraft
,
H. K.
Arslan
,
H.
Gliemann
,
P. G.
Weidler
, and
Ch.
Wöll
,
Appl. Phys. Lett.
101
,
101910
(
2012
).
12.
P. G.
Weidler
and
F.
Friedrich
,
Am. Miner.
92
,
1130
1132
(
2007
);
F.
Friedrich
,
A.
Steudel
, and
P. G.
Weidler
,
Clays Clay Miner.
56
(
5
),
505
510
(
2008
).
13.
F. D.
Bloss
,
Optical Crystallography, Monograph Series No. 5
(
Mineralogical Society of America
,
1999
), p.
239
.
14.
G.
Lu
and
J. T.
Hupp
,
J. Am. Chem. Soc.
132
(
23
),
7832
7833
(
2010
).
15.
S.
Hermes
,
F.
Schroder
,
R.
Chelmowski
,
Ch.
Wöll
, and
R. A.
Fischer
,
J. Am. Chem. Soc.
127
(
40
),
13744
13745
(
2005
);
[PubMed]
E.
Biemmi
,
C.
Scherb
, and
T.
Bein
,
J. Am. Chem. Soc.
129
(
26
),
8054
8055
(
2007
);
[PubMed]
P.
Horcajada
,
C.
Serre
,
D.
Grosso
,
C.
Boissiere
,
S.
Perruchas
,
C.
Sanchez
, and
G.
Ferey
,
Adv. Mater.
21
(
19
),
1931
1935
(
2009
).
16.
H.
Gliemann
and
Ch.
Wöll
,
Mater. Today
15
(
3
),
110
116
(
2012
).
17.
H. K.
Arslan
,
O.
Shekhah
,
J.
Wohlgemuth
,
M.
Franzreb
,
R. A.
Fischer
, and
Ch.
Wöll
,
Adv. Funct. Mater.
21
,
4228
4231
(
2011
).
18.
M. E.
Silvestre
,
M.
Franzreb
,
P. G.
Weidler
,
O.
Shekhah
, and
Ch.
Wöll
,
Adv. Funct. Mater.
23
,
1210
1213
(
2013
).
19.
A.
Dragässer
,
O.
Shekhah
,
O.
Zybaylo
,
C.
Shen
,
M.
Buck
,
Ch.
Wöll
, and
D.
Schlettwein
,
Chem. Commun.
48
,
663
665
(
2012
).
20.
H. K.
Arslan
,
O.
Shekhah
,
D. C. F.
Wieland
,
M.
Paulus
,
C.
Sternemann
,
M. A.
Schroer
,
S.
Tiemeyer
,
M.
Tolan
,
R. A.
Fischer
, and
Ch.
Wöll
,
J. Am. Chem. Soc.
133
,
8158
8161
(
2011
).
21.
O.
Zybaylo
,
O.
Shekhah
,
H.
Wang
,
M.
Tafipolsky
,
R.
Schmid
,
D.
Johannsmann
, and
Ch.
Wöll
,
Phys. Chem. Chem. Phys.
12
(
28
),
8093
8098
(
2010
).
22.
Y.
Yoo
and
H. K.
Jeong
,
Cryst. Growth Des.
10
(
3
),
1283
1288
(
2010
).
23.
See supplementary material at http://dx.doi.org/10.1063/1.4819836 for (a) Fig. S1 a setup employed for the fabrication of MOF thin films with the LPE spray method; for (b) Figs. S8a and S9 on SURMOF thin film morphology data; for (c) Figs. S6 and S7a-c on XRD data (out of plane) of HKSUT-1 and Cu-BDC SURMOF-2 thin films; for (d) Fig. S2 on the experimental heating equipment; for (e) Fig. S5 on IRRAS data of HKUST-1 and Cu-BDC SURMOFs; for (f) Figs. S4ab and Figs. S4c-e on Spectroscopy Ellipsometry (SE) measurements and for (g) Fig. S10 on the used organic linker lengths in the isoreticular series of MOF-2 (e.g., from 1.1 nm to 2.8 nm).

Supplementary Material

You do not currently have access to this content.