Recent findings in nanodeformation of semiconductors posed a dilemma whether the nanoscale plasticity starts with phase transformation or nucleation of dislocations in a stressed nanovolume. In this letter we demonstrate the results of nanoindentation experiments with different loading rate, which enable us to conclude on a mechanism of incipient plasticity. The recorded nanodeformation response of GaAs and Si contrasts that observed for either GaN or metallic Fe crystal, which supports the phase transformation nature of the GaAs incipient plasticity. The derived relationship between the energy barrier for defect nucleation and applied stress served as a verification of the obtained results.
REFERENCES
1.
C. A.
Schuh
, Mater. Today
9
, 32
(2006
).2.
I.
Szlufarska
, Mater. Today
9
, 42
(2006
).3.
R.
Nowak
, D.
Chrobak
, S.
Nagao
, D.
Vodnick
, M.
Berg
, A.
Tukiainen
, and M.
Pessa
, Nat. Nanotechnol.
4
, 287
(2009
).4.
D.
Chrobak
, N.
Tymiak
, A.
Beaber
, O.
Ugurlu
, W. W.
Garberich
, and R.
Nowak
, Nat. Nanotechnol.
6
, 480
(2011
).5.
V.
Domnich
and Y.
Gogotsi
, in Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials
, edited by H. D.
Hochheimer
, B.
Kuchta
, P. K.
Dorhout
, and J. L.
Yarger
(Kluwer Academic Publishers
, 2001
), pp. 291
–302
.6.
R.
Nowak
, D.
Chrobak
, S.
Nagao
, D.
Vodnick
, and M.
Berg
, Mater. Sci. Technol.
28
, 1202
(2012
).7.
P.
Neuzil
, C. C.
Wong
, and J.
Reboud
, Nano Lett.
10
, 1248
(2010
).8.
G. L. W.
Cross
, Nat. Nanotechnol.
6
, 467
(2011
).9.
D.
Lorenz
, A.
Zeckzer
, U.
Hilpert
, P.
Grau
, H.
Johansen
, and H. S.
Leipner
, Phys. Rev. B
67
, 172101
(2003
).10.
K. L.
Johnson
, Contact Mechanics
(Cambridge University Press
, Cambridge
, 1985
).11.
See supplementary material at http://dx.doi.org/10.1063/1.4818260 for details of the stress-ratio criterion and correlation between the applied stress and the rate of defect nucleation.
12.
D.
Chrobak
, K.
Nordlund
, and R.
Nowak
, Phys. Rev. Lett.
98
, 045502
(2007
).13.
R. J.
Nelmes
and M. I.
McMahon
, Semicond. Semimetals
54
, 145
(1998
).14.
M.
Fujikane
, T.
Yokogawa
, S.
Nagao
, and R.
Nowak
, Phys. Status Solidi C
8
, 429
(2011
).15.
X.
Gao
, Scr. Mater.
53
, 1315
(2005
).16.
S. T.
Weir
, Y. K.
Vohra
, C. A.
Vanderborgh
, and A. L.
Ruoff
, Phys. Rev. B
39
, 1280
(1989
).17.
J. M.
Besson
, J. P.
Itie
, A.
Polian
, G.
Weill
, J. L.
Mansot
, and J.
Gonzalez
, Phys. Rev. B
44
, 4214
(1991
).18.
J. E.
Bradby
, J. S.
Williams
, and M. V.
Swain
, Phys. Rev. B
67
, 085205
(2003
).19.
T.
Juliano
, V.
Domnich
, and Y.
Gogotsi
, J. Mater. Res.
19
, 3099
(2004
).20.
Y. B.
Gerbig
, S. J.
Stranick
, D. J.
Morris
, M. D.
Vaudin
, and R. F.
Cook
, J. Mater. Res.
24
, 1172
(2009
).21.
Y. B.
Gerbig
, S. J.
Stranick
, and R. F.
Cook
, Phys. Rev. B
83
, 205209
(2011
).22.
Y. B.
Gerbig
, C. A.
Michaels
, A. M.
Forster
, and R. F.
Cook
, Phys. Rev. B
85
, 104102
(2012
).23.
D. E.
Kim
and S. I.
Oh
, J. Appl. Phys.
104
, 013502
(2008
).24.
M.
Fujikane
, T.
Yokogawa
, S.
Nagao
, and R.
Nowak
, Appl. Phys. Lett.
101
, 201901
(2012
).25.
M.
Ueno
, M.
Yoshida
, A.
Onodera
, O.
Shimomura
, and K.
Takemura
, Phys. Rev. B
49
, 14
(1994
).26.
C. A.
Schuh
and A. C.
Lund
, J. Mater. Res.
19
, 2152
(2004
).27.
C. A.
Schuh
, J. K.
Mason
, and A. C.
Lund
, Nat. Mater.
4
, 617
(2005
).28.
A. M.
Minor
, S. A. S.
Asif
, Z.
Shan
, E. A.
Stach
, E.
Cyrankowski
, T. J.
Wyrobek
, and O. L.
Warren
, Nat. Mater.
5
, 697
(2006
).29.
Z. W.
Shan
, R. K.
Mishra
, S. A. S.
Asif
, O. L.
Warren
, and A. M.
Minor
, Nat. Mater.
7
, 115
(2007
).30.
M.
Mishra
and I.
Szlufarska
, Acta Mater.
57
, 6156
(2009
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.