Here, we introduce Streamline Image Velocimetry, a method to derive fluid velocity fields in fully developed laminar flow from long-exposure images of streamlines. Streamlines confine streamtubes, in which the volumetric flow is constant for incompressible fluid. Using an explicit analytical solution as a boundary condition, velocity fields and emerging properties such as shear force and pressure can be quantified throughout. Numerical and experimental validations show a high correlation between anticipated and measured results, with R2 > 0.91. We report spatial resolution of 2 μm in a flow rate of 0.15 m/s, resolution that can only be achieved with 75 kHz frame rate in traditional particle tracking velocimetry.

1.
K.
Kroy
,
G.
Sauermann
, and
H. J.
Herrmann
,
Phys. Rev. Lett.
88
,
054301
(
2002
).
2.
G.
Caulliez
,
N.
Ricci
, and
R.
Dupont
,
Phys. Fluids
10
,
757
(
1998
).
3.
S. Z.
Shuja
and
B. S.
Yilbas
,
Int. J. Numer. Methods Heat Fluid Flow
11
,
237
(
2001
).
4.
C.
Lelièvre
,
P.
Legentilhomme
,
C.
Gaucher
,
J.
Legrand
,
C.
Faille
, and
T.
Bénézech
,
Chem. Eng. Sci.
57
,
1287
(
2001
).
6.
T. M.
Squires
and
S. R.
Quake
,
Rev. Mod. Phys.
77
,
977
(
2005
).
7.
C. S. S. R.
Kumar
,
Microfluidic Devices in Nanotechnology Applications
(
Wiley
,
Hoboken, NJ
,
2010
).
8.
S. T.
Wereley
and
C. D.
Meinhart
,
Annu. Rev. Fluid Mech.
42
,
557
(
2010
).
9.
N.
Jesuthasan
,
B. R.
Baliga
, and
S. B.
Savage
,
Kona
24
,
15
(
2006
), available at http://www.kona.or.jp/search//24_015.pdf.
10.
Y.
Yeh
and
H. Z.
Cummins
,
Appl. Phys. Lett.
4
,
176
(
1964
).
12.
P. E.
Dimotakis
,
F. D.
Debussy
, and
M. M.
Koochesfahani
,
Phys. Fluids
24
,
995
(
1981
).
13.
R. J.
Adrian
,
Annu. Rev. Fluid Mech.
23
,
261
(
1991
).
14.
S. J.
Williams
,
C.
Park
, and
S. T.
Wereley
,
Microfluid. Nanofluid.
8
,
709
(
2010
).
15.
H.
Ishida
,
H.
Shirakawa
,
T.
Andoh
,
S.
Akiguchi
,
D.
Kobayashi
,
K.
Ueyama
,
Y.
Kuraishi
, and
T.
Hachiga
,
J. Appl. Phys.
106
,
054701
(
2009
).
16.
S.
Akiguchi
,
H.
Ishida
,
T.
Andoh
,
T.
Hachiga
,
T.
Shimizu
,
Y.
Kuraishi
,
H.
Shirakawa
, and
K.
Ueyama
,
Meas. Sci. Technol.
23
,
045702
(
2012
).
17.
C. D.
Meinhart
,
S. T.
Wereley
, and
J. G.
Santiago
,
Exp. Fluids
27
,
414
(
1999
).
18.
H. S.
Chuang
,
L. C.
Gui
, and
S. T.
Wereley
,
Microfluid. Nanofluid.
13
,
49
(
2012
).
19.
S.
Scharnowski
and
C. J.
Kähler
,
Exp. Fluids
54
,
1435
(
2012
).
20.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge Mathematical Library
,
1970
).
21.
L.
Prantdl
and
O. G.
Tiejens
,
Fundamentals of Hydro- and Aeromechanics
(
Dover Publications
,
New Dover
,
2011
).
22.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
2007
), p.
44
50
.
23.
G. M.
Whitesides
and
A. D.
Stroock
,
Phys. Today
54
(
6
),
42
(
2001
).
24.
J. M.
Ng
,
I.
Gitlin
,
A. D.
Stroock
, and
G. M.
Whitesides
,
Electrophoresis
23
,
3461
(
2002
).
25.
I. F.
Sbalzarini
and
P.
Koumoutsakos
,
J. Struct. Biol.
151
,
182
(
2005
).
26.
F.
Fachin
,
G. D.
Chen
,
M.
Toner
, and
B. L.
Wardle
,
J. Microelectromech. Syst.
20
,
1428
(
2011
).
27.
J.
Mathieu
and
J.
Scott
,
An Introduction to Turbulent Flow
(
Cambridge University Press
,
Cambridge, New York
,
2000
), p.
76
.
28.
O.
Reynolds
,
Philos. Trans. R. Soc. London, Ser. A
186
,
123
(
1895
).
29.
P.
Pakdel
and
G. H.
McKinley
,
Phys. Rev. Lett.
77
,
2459
(
1996
).
30.
Y.
Feng
,
J.
Goree
, and
B.
Liu
,
Rev. Sci. Instrum.
82
,
053707
(
2011
).
31.
I.
Ishii
,
T.
Taniguchi
,
K.
Yamamoto
, and
T.
Takaki
,
IEEE Trans. Circuits Syst. Video Technol.
22
,
105
(
2012
).
32.
A.
Sciacchitano
,
F.
Scarano
, and
B.
Wieneke
,
Exp. Fluids
53
,
1087
(
2012
).
33.
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
,
Springer Handbook of Experimental Fluid Mechanics
(
Springer
,
Berlin
,
2007
).
You do not currently have access to this content.