To obtain reduced specific contact resistivity, iodine donors and silver acceptors were ion-implanted into n-type and p-type (Bi,Sb)2(Se,Te)3 materials, respectively, to achieve >10 times higher doping at the surface. Implantation into n-type materials caused the specific contact resistivity to decrease from 1.7 × 10−6 Ω cm2 to 4.5 × 10−7 Ω cm2. Implantation into p-type materials caused specific contact resistivity to decrease from 7.7 × 10−7 Ω cm2 to 2.7 × 10−7 Ω cm2. For implanted thin-film superlattices, the non-implanted values of 1.4 × 10−7 Ω cm2 and 5.3 × 10−8 Ω cm2 precipitously dropped below the detection limit after implantation, ≤10−8 Ω cm2. These reductions in specific contact resistivity are consistent with an increase in tunneling across the contact.

1.
P. J.
Taylor
,
J. R.
Maddux
, and
P.
Uppal
,
J. Electron. Mater.
41
(
9
),
2307
(
2012
).
2.
V.
Semenyuk
, in
IEEE Proceedings of the 20th International Conference on Thermoelectrics
(
2001
), p.
391
.
3.
R.
Gupta
,
J.
White
,
O.
Iyore
,
U.
Chakrabati
,
H.
Alshareef
, and
B.
Gnade
,
Electrochem. Solid-State Lett.
12
(
8
),
H302
(
2009
).
4.
P. J.
Taylor
,
T. C.
Harman
,
N. K.
Dhar
,
P. S.
Wijewarnasuriya
,
J. C.
Fraser
, and
M. Z.
Tidrow
,
Appl. Phys. Lett.
85
,
5415
(
2004
).
5.
R.
Gupta
,
O.
Iyore
,
K.
Xiong
,
J.
White
,
K.
Cho
,
H.
Alshareef
, and
B.
Gnade
,
Electrochem. Solid-State Lett.
12
,
H395
(
2009
).
6.
C.
Liao
,
C.
Lee
, and
W.
Chen
,
Electrochem. Solid-State Lett.
10
(
9
),
P23
(
2007
).
7.
W.
Goodhue
,
R.
Reeder
,
C.
Vineis
,
S.
Calawa
,
H.
Dauplaise
,
S.
Vangala
,
M.
Walsh
, and
T.
Harman
,
J. Appl. Phys.
111
,
104501
(
2012
).
8.
F.
Fang
,
R.
Opila
,
R.
Venkatasubramanian
, and
T.
Colpitts
,
J. Vac. Sci. Technol. A
29
,
031403
(
2011
).
9.
D.
Haneman
,
J. Phys. Chem. Solids
11
(
3–4
),
205
(
1959
).
10.
H.
Jeon
,
H.
Ha
,
D.
Hyn
, and
J.
Shim
,
J. Phys. Chem. Solids
52
,
579
(
1991
).
11.
M.
Shur
,
Physics of Semiconductor Devices, Prentice Hall Series in Solid-State Electronics
, edited by
N.
Holonyak
(
Englewood Cliffs
,
New Jersey
,
1990
), p.
212
.
12.
R.
Popovic
,
Solid State Electron.
21
,
1133
(
1978
).
13.
N.
Braslau
,
J. Vac. Sci. Technol.
19
(
3
),
803
(
1981
).
14.
R. H.
Cox
and
H.
Strack
,
Solid-State Electron.
10
,
1213
(
1967
).
15.
J.
Klootwijk
and
C.
Timmering
, in
Proceedings of IEEE International Conference on Microelectronics Test Structures
(
2004
), Vol.
17
, p.
247
.
16.
G. K.
Reeves
,
Solid-State Electron.
23
(
5
),
487
(
1980
).
17.
G.
Bulman
, private communication (
2012
).
18.
G. N.
Gordiakova
,
G. V.
Kokosh
, and
S. S.
Sinani
,
Sov. Phys.-Tech. Phys.
3
,
1
(
1958
).
19.
J.
Navratil
,
I.
Klichova
,
S.
Karamazov
,
J.
Sramkova
, and
J.
Horak
,
J. Solid-State Chem.
140
(
1
),
29
(
1998
).
20.
P.
Lostak
,
C.
Drasar
,
J.
Horak
,
Z.
Zhou
,
J.
Dyck
, and
C.
Uher
,
J. Phys. Chem. Solids
67
(
7
),
1457
(
2006
).
21.
Because of significant surface roughness the exact final position of the silver peak with respect to the surface could not be determined with certainty.
22.
D.
Ilzycer
,
A.
Sher
, and
M.
Shiloh
,
in
Proceedings of the 3rd International Conference on Thermoelectric Energy Conversion
(
1980
), p.
200
.
23.
R.
Gupta
,
K.
Xiong
,
J.
White
,
K.
Cho
,
H.
Alshareef
, and
B.
Gnade
,
J. Electrochem. Soc.
157
(
6
),
H666
(
2010
).
24.
A.
Foyt
,
J.
Donnelly
, and
W.
Lindley
,
Appl. Phys. Lett.
14
(
12
),
372
(
1969
).
25.
L. W.
da Silva
and
M.
Kaviany
,
Int. J. Heat Mass Transfer
47
,
2417
(
2004
).
You do not currently have access to this content.