Coherent high-amplitude precession of the magnetization and spin waves with frequencies up to 40 GHz are generated by injecting picosecond compressive and shear acoustic pulses into nanometer-sized galfenol (Fe81Ga19) films. The magnetization modulation is due to the picosecond inverse magnetostrictive effect. The oscillations of the magnetization measured by magneto-optical Kerr rotation last for several nanoseconds, and the maximum modulation of the in-plane effective magnetic field is as high as 40 mT. These results in combination with a comprehensive theoretical analysis show that galfenol films possess excellent properties for ultrafast magnetization control based on the picosecond inverse magnetostrictive effect.

1.
F. T.
Calkins
,
A. B.
Flatau
, and
M. J.
Dapino
,
J. Intell. Mater. Syst. Struct.
18
,
1057
(
2007
).
2.
Y. K.
Fetisov
and
G.
Srinivasan
,
Appl. Phys. Lett.
88
,
143503
(
2006
).
3.
A.
Ustinov
,
G.
Srinivasan
, and
B.
Kalinikos
,
Appl. Phys. Lett.
90
,
031913
(
2007
).
4.
C.
Pettiford
,
S.
Dasgupta
,
J.
Lou
,
S. D.
Yoon
, and
N.
Sun
,
IEEE Trans. Magn.
43
,
3343
(
2007
).
5.
J.-M.
Hu
,
Z.
Li
,
L.-Q.
Chen
, and
C.-W.
Nan
,
Nat. Commun.
2
,
553
(
2011
).
6.
A.
Khitun
,
M.
Bao
, and
K. L.
Wang
,
J. Phys. D
43
,
264005
(
2010
).
7.
D. E.
Parkes
,
L. R.
Shelford
,
P.
Wadley
,
V.
Holý
,
M.
Wang
,
A. T.
Hindmarch
,
G.
van der Laan
,
R. P.
Campion
,
K. W.
Edmonds
,
S. A.
Cavill
, and
A. W.
Rushforth
,
Sci. Reports
(in press), e-print arXiv:1302.5097.
8.
J.
Lou
,
M.
Liu
,
D.
Reed
,
Y.
Ren
, and
N. X.
Sun
,
Adv. Mater.
21
,
4711
(
2009
).
9.
D. E.
Parkes
,
S. A.
Cavill
,
A. T.
Hindmarch
,
P.
Wadley
,
F.
McGee
,
C. R.
Staddon
,
K. W.
Edmonds
,
R. P.
Campion
,
B. L.
Gallagher
, and
A. W.
Rushforth
,
Appl. Phys. Lett.
101
,
072402
(
2012
).
10.
S.
Cavill
,
D.
Parkes
,
J.
Miguel
,
S.
Dhesi
,
K.
Edmonds
,
R.
Campion
, and
A.
Rushforth
,
Appl. Phys. Lett.
102
,
032405
(
2013
).
11.
K.
Vahaplar
,
A.
Kalashnikova
,
A.
Kimel
,
D.
Hinzke
,
U.
Nowak
,
R.
Chantrell
,
A.
Tsukamoto
,
A.
Itoh
,
A.
Kirilyuk
, and
T.
Rasing
,
Phys. Rev. Lett.
103
,
117201
(
2009
).
12.
C.
Back
,
D.
Weller
,
J.
Heidmann
,
D.
Mauri
, and
D.
Guarisco
,
Phys. Rev. Lett.
81
,
3251
(
1998
).
13.
T.
Gerrits
,
H.
Van Den Berg
,
J.
Hohlfeld
,
L.
Bär
, and
T.
Rasing
,
Nature (London)
418
,
509
(
2002
).
14.
F.
Hansteen
,
A.
Kimel
,
A.
Kirilyuk
, and
T.
Rasing
,
Phys. Rev. Lett.
95
,
047402
(
2005
).
15.
M.
van Kampen
,
C.
Jozsa
,
J.
Kohlhepp
,
P.
LeClair
,
L.
Lagae
,
W.
de Jonge
, and
B.
Koopmans
,
Phys. Rev. Lett.
88
,
227201
(
2002
).
16.
A. V.
Scherbakov
,
A. S.
Salasyuk
,
A. V.
Akimov
,
X.
Liu
,
M.
Bombeck
,
C.
Bruggemann
,
D. R.
Yakovlev
,
V. F.
Sapega
,
J. K.
Furdyna
, and
M.
Bayer
,
Phys. Rev. Lett.
105
,
117204
(
2010
).
17.
J.-W.
Kim
,
M.
Vomir
, and
J.-Y.
Bigot
,
Phys. Rev. Lett.
109
,
166601
(
2012
).
18.
C.
Thomsen
,
H. T.
Grahn
,
H. J.
Maris
, and
J.
Tauc
,
Phys. Rev. B
34
,
4129
(
1986
).
19.
A. V.
Scherbakov
,
M.
Bombeck
,
J. V.
Jäger
,
A. S.
Salasyuk
,
T. L.
Linnik
,
V. E.
Gusev
,
D. R.
Yakovlev
,
A. V.
Akimov
, and
M.
Bayer
,
Opt. Express
21
,
16473
(
2013
).
20.
M.
Bombeck
,
J. V.
Jager
,
A. V.
Scherbakov
,
T.
Linnik
,
D. R.
Yakovlev
,
X.
Liu
,
J. K.
Furdyna
,
A. V.
Akimov
, and
M.
Bayer
,
Phys. Rev. B
87
,
060302
(
2013
).
21.
O. B.
Wright
and
K.
Kawashima
,
Phys. Rev. Lett.
69
,
1668
(
1992
).
22.
The sound velocities in Fe81Ga19, sLAFeGa=5.0 km/s, sQLAFeGa=6.0 km/s, sQTAFeGa=2.8 km/s, were obtained using the elastic constants from Refs. 23 and 24.
23.
J. B.
Restorff
,
M.
Wun-Fogle
,
K. B.
Hathaway
,
A. E.
Clark
,
T. A.
Lograsso
, and
G.
Petculescu
,
J. Appl. Phys.
111
,
023905
(
2012
).
24.
A. E.
Clark
,
K. B.
Hathaway
,
M.
Wun-Fogle
,
J. B.
Restorff
,
T. A.
Lograsso
,
V. M.
Keppens
,
G.
Petculescu
, and
R. A.
Taylor
,
J. Appl. Phys.
93
,
8621
(
2003
).
25.
T. L.
Linnik
,
A. V.
Scherbakov
,
D. R.
Yakovlev
,
X.
Liu
,
J. K.
Furdyna
, and
M.
Bayer
,
Phys. Rev. B
84
,
214432
(
2011
).
26.
W.
Chen
,
H.
Maris
,
Z.
Wasilewski
, and
S.-I.
Tamura
,
Philos. Mag. B
70
,
687
(
1994
).
27.
R.
Urban
,
B.
Heinrich
,
G.
Woltersdorf
,
K.
Ajdari
,
K.
Myrtle
,
J. F.
Cochran
, and
E.
Rozenberg
,
Phys. Rev. B
65
,
020402
R
(
2001
).
28.
M.
Bombeck
,
A. S.
Salasyuk
,
B. A.
Glavin
,
A. V.
Scherbakov
,
C.
Bruggemann
,
D. R.
Yakovlev
,
V. F.
Sapega
,
X.
Liu
,
J. K.
Furdyna
,
A. V.
Akimov
, and
M.
Bayer
,
Phys. Rev. B
85
,
195324
(
2012
).
29.

The parameter values are given in accordance with the expression for the free energy density described in Ref. 25. For better agreement we also add the lower-order in-plane magneto-elastic term in the form A2⊥εzzmxmy.

30.

The magnetization direction is described by polar angle, θ, and azimuthal angle, ϕ.33 In ferromagnetic materials such as Fe (Ref. 31) and (Ga,Mn)As,32 the in-plane uniaxial anisotropy or saturation magnetization, respectively, are small, and Hz modifies only one angle θ. This results in one minimum in the dependence f(H) (Hz). In galfenol H modifies both angles, θ and φ, resulting in double minima in f(H).

31.
J.
Lindner
and
M.
Farle
,
Magnetic Heterostructures
, Springer Tracts in Modern Physics Vol. 227, edited by
H.
Zabel
and
S. D.
Bader
(
Springer
,
Berlin/Heidelberg
,
2008
), pp.
45
95
.
32.
X.
Liu
and
J. K.
Furdyna
,
J. Phys.: Condens. Matter
18
,
R245
(
2006
).
33.

The magnetic anisotropy of the films determined by superconducting quantum interference device (SQUID) magnetometry reveal that for the Fe81Ga19 film grown on the (001)-GaAs substrate the in-plane anisotropy consists of a superposition of a cubic term favoring the [100]/[010] directions and a uniaxial term favoring the [110] direction. For the Fe81Ga19 film deposited on the (311)-GaAs substrate, we measure the easy axis lying along the [−233] direction, in accordance with Ref. 34.

34.
P. K.
Muduli
,
J.
Herfort
,
H.-P.
Schonher
,
L.
Dawerite
, and
K. H.
Ploog
,
J. Appl. Phys.
81
,
901
(
2005
).
35.
M.
Farle
,
Rep. Prog. Phys.
61
,
755
826
(
1998
).
36.
A. V.
Scherbakov
,
P. J. S.
van Capel
,
A. V.
Akimov
,
J. I.
Dijkhuis
,
D. R.
Yakovlev
,
T.
Berstermann
, and
M.
Bayer
,
Phys. Rev. Lett.
99
,
057402
(
2007
).
37.
L.
Thevenard
,
J.-Y.
Duquesne
,
E.
Peronne
,
H. J.
von Bardeleben
,
H.
Jaffres
,
S.
Ruttala
,
J.-M.
George
,
A.
Lemaître
, and
C.
Gourdon
,
Phys. Rev. B
87
,
144402
(
2013
).
38.
A.
Ambrosy
and
K.
Holdik
,
J. Phys. E: Sci. Instrum.
17
,
856
(
1984
).
You do not currently have access to this content.