Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp2 hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer α-graphdiyne was C6Li7.31 and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719 mAh g−1/2032 mAh cm−3, much greater than the values of ∼372 mAh g−1/∼818 mAh cm−3, ∼1117 mAh g−1/∼1589 mAh cm−3, and ∼744 mAh g−1 for graphite, graphynes, and γ-graphdiyne, respectively. Our calculations suggest that multilayer α-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

1.
E.
Stura
and
C.
Nicolini
,
Anal. Chim. Acta
568
,
57
(
2006
).
2.
B. J.
Landi
,
M. J.
Ganter
,
C. D.
Cress
,
R. A.
DiLeo
, and
R. P.
Raffaelle
,
Energy Environ. Sci.
2
,
638
(
2009
).
3.
4.
A.
Satoh
,
N.
Takami
, and
T.
Ohsaki
,
Solid State Ionics
80
,
291
(
1995
).
5.
M.
Balasubramanian
,
C. S.
Johnson
,
J. O.
Cross
,
G. T.
Seidler
,
T. T.
Fister
,
E. A.
Stern
,
C.
Hammer
, and
S. O.
Mariager
,
Appl. Phys. Lett.
91
,
031904
(
2007
).
6.
O.
Leenaerts
,
B.
Partoens
, and
F. M.
Peeters
,
Appl. Phys. Lett.
103
,
013105
(
2013
).
7.
Y. Y.
Zhang
,
Q. X.
Pei
, and
C. M.
Wang
,
Appl. Phys. Lett.
101
,
081909
(
2012
).
8.
D.
Malko
,
C.
Neiss
,
F.
Vines
, and
A.
Gorling
,
Phys. Rev. Lett.
108
,
086804
(
2012
).
9.
B. G.
Kim
and
H. J.
Choi
,
Phys. Rev. B
86
,
115435
(
2012
).
10.
J.
Chen
,
J.
Xi
,
D.
Wang
, and
Z.
Shuai
,
J. Phys. Chem. Lett.
4
,
1443
(
2013
).
11.
H. J.
Hwang
,
Y.
Kwon
, and
H.
Lee
,
J. Phys. Chem. C
116
,
20220
(
2012
).
12.
Y.
Guo
,
K.
Jiang
,
B.
Xu
,
Y.
Xia
,
J.
Yin
, and
Z.
Liu
,
J. Phys. Chem. C
116
,
13837
(
2012
).
13.
C.
Li
,
J.
Li
,
F.
Wu
,
S.-S.
Li
,
J.-B.
Xia
, and
L.-W.
Wang
,
J. Phys. Chem. C
115
,
23221
(
2011
).
14.
T.
Hussain
,
B.
Pathak
,
M.
Ramzan
,
T. A.
Maark
, and
R.
Ahuja
,
Appl. Phys. Lett.
100
,
183902
(
2012
).
15.
H.
Zhang
,
M.
Zhao
,
X.
He
,
Z.
Wang
,
X.
Zhang
, and
X.
Liu
,
J. Phys. Chem. C
115
,
8845
(
2011
).
16.
H. J.
Hwang
,
J.
Koo
,
M.
Park
,
N.
Park
,
Y.
Kwon
, and
H.
Lee
,
J. Phys. Chem. C
117
,
6919
6923
(
2013
).
17.
J. M.
Kehoe
,
J. H.
Kiley
,
J. J.
English
,
C. A.
Johnson
,
R. C.
Petersen
, and
M. M.
Haley
,
Org. Lett.
2
,
969
(
2000
).
18.
C. A.
Johnson
 II
,
Y.
Lu
, and
M. M.
Haley
,
Org. Lett.
9
,
3725
(
2007
).
19.
G. X.
Li
,
Y. L.
Li
,
H. B.
Liu
,
Y. B.
Guo
,
Y. J.
Li
, and
D. B.
Zhu
,
Chem. Commun.
46
,
3256
(
2010
).
20.
C.
Sun
and
D. J.
Searles
,
J. Phys. Chem. C
116
,
26222
(
2012
).
21.
L. D.
Pan
,
L. Z.
Zhang
,
B. Q.
Song
,
S. X.
Du
, and
H.-J.
Gao
,
Appl. Phys. Lett.
98
,
173102
(
2011
).
22.
G.
Luo
,
X.
Qian
,
H.
Liu
,
R.
Qin
,
J.
Zhou
,
L.
Li
,
Z.
Gao
,
E.
Wang
,
W.-N.
Mei
,
J.
Lu
,
Y.
Li
, and
S.
Nagase
,
Phys. Rev. B
84
,
075439
(
2011
).
23.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
24.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
26.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
27.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
28.
K. T.
Chan
,
J. B.
Neaton
, and
M. L.
Cohen
,
Phys. Rev. B
77
,
235430
(
2008
).
29.
Q.
Sun
,
P.
Jena
,
Q.
Wang
, and
M.
Marquez
,
J. Am. Chem. Soc.
128
,
9741
(
2006
).
30.
Z.
Zhou
,
X.
Gao
,
J.
Yan
,
D.
Song
, and
M.
Morinaga
,
J. Phys. Chem. B
108
,
9023
(
2004
).
31.
M.
Park
and
H.
Lee
,
J. Korean Phys. Soc.
63
,
1014
(
2013
).
32.
K.
Persson
,
Y.
Hinuma
,
Y. S.
Meng
,
A. V.
d. Ven
, and
G.
Ceder
,
Phys. Rev. B
82
,
125416
(
2010
).
You do not currently have access to this content.