X-ray phase-contrast imaging techniques are used at synchrotron facilities to visualize tiny density variations in bulk samples. They overcome the limitations of other non-destructive methods, which often provide insufficient spatial and/or density resolution. Holotomography (HT) and X-ray grating interferometry (XGI) are among the most powerful phase-contrast techniques. Here, we show a direct comparison of HT versus XGI. We find that XGI excels in fidelity of the density measurements and is more robust against low-frequency artifacts, while HT is superior in spatial resolution. This study gives indications for applications and developments of phase-contrast imaging.

1.
R.
Fitzgerald
,
Phys. Today
53
(
7
),
23
(
2000
).
2.
U.
Bonse
and
M.
Hart
,
Appl. Phys. Lett.
6
,
155
(
1965
).
3.
E.
Förster
,
K.
Goetz
, and
P.
Zaumseil
,
Krist. Tech.
15
,
937
(
1980
).
4.
A.
Snigirev
,
I.
Snigireva
,
V.
Kohn
,
S.
Kuznetsov
, and
I.
Schelokov
,
Rev. Sci. Instrum.
66
,
5486
(
1995
).
5.
P.
Cloetens
,
W.
Ludwig
,
J.
Baruchel
,
D. V.
Dyck
,
J. V.
Landuyt
,
J. P.
Guigay
, and
M.
Schlenker
,
Appl. Phys. Lett.
75
,
2912
(
1999
).
6.
A.
Momose
,
S.
Kawamoto
,
I.
Koyama
,
Y.
Hamaishi
,
K.
Takai
, and
Y.
Suzuki
,
Jpn. J. Appl. Phys., Part 2
42
,
L866
(
2003
).
7.
T.
Weitkamp
,
A.
Diaz
,
C.
David
,
F.
Pfeiffer
,
M.
Stampanoni
,
P.
Cloetens
, and
E.
Ziegler
,
Opt. Express
13
,
6296
(
2005
).
8.
A.
Guinier
,
X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies
, Dover Books on Physics Series (
Dover
,
1994
).
9.
G.
Schulz
,
T.
Weitkamp
,
I.
Zanette
,
F.
Pfeiffer
,
F.
Beckmann
,
C.
David
,
S.
Rutishauser
,
R.
Reznikova
, and
B.
Müller
,
J. R. Soc. Interface
7
,
1665
(
2010
).
10.
G.
Schulz
,
C.
Waschkies
,
F.
Pfeiffer
,
I.
Zanette
,
T.
Weitkamp
,
C.
David
, and
B.
Müller
,
Sci. Rep.
2
,
826
(
2012
).
11.
S.
Zabler
,
P.
Cloetens
,
J.-P.
Guigay
,
J.
Baruchel
, and
M.
Schlenker
,
Rev. Sci. Instrum.
76
,
073705
(
2005
).
13.
J. P.
Guigay
,
M.
Langer
,
R.
Boistel
, and
P.
Cloetens
,
Opt. Lett.
32
,
1617
(
2007
).
14.
M.
Langer
,
P.
Cloetens
, and
F.
Peyrin
,
IEEE Trans. Image Process.
19
,
2428
(
2010
).
15.
M.
Langer
,
P.
Cloetens
,
J.
Guigay
, and
F.
Peyrin
,
Med. Phys.
35
,
4556
4566
(
2008
).
16.
A.
Andronache
,
M.
von Siebenthal
,
G.
Szekely
, and
P.
Cattin
,
Med. Image Anal.
12
,
3
(
2008
).
17.
B.
Müller
,
H.
Deyhle
,
S.
Lang
,
G.
Schulz
,
T.
Bormann
,
F.
Fierz
, and
S.
Hieber
,
Int. J. Mater. Res.
103
,
242
(
2012
).
18.
C.
David
,
B.
Nöhammer
,
H. H.
Solak
, and
E.
Ziegler
,
Appl. Phys. Lett.
81
,
3287
(
2002
).
19.
A.
Momose
,
Jpn. J. Appl. Phys., Part 1
44
,
6355
(
2005
).
20.
The heart specimen was extracted from a Fischer rat at ESRF with procedures conformed to the guidelines of the French Government. After extraction, the heart was immersed in a 10% formalin solution and placed in a plastic container. The tumor was injected on the flank of a Balb nude mouse and was extracted from the animal before it had reached a diameter of 3 mm. All procedures regarding the tumor growing and extraction were performed in strict adherence to the Swiss law for animal protection. The tumor was fixed in formalin 5% solution and placed in a plastic capillary.
21.
I.
Zanette
,
T.
Weitkamp
,
S.
Lang
,
M.
Langer
,
J.
Mohr
,
C.
David
, and
J.
Baruchel
,
Phys. Status Solidi A
208
,
2526
2532
(
2011
).
22.
The quantitative δ values were obtained by adding an offset corresponding to the theoretical δ values of the immersion material at the working energies (δ of water at 19 keV is 6.39×107 and δ of air at 17.6 keV is 7×1010 from the Henke database33).
23.
F.
Pfeiffer
,
C.
Kottler
,
O.
Bunk
, and
C.
David
,
Phys. Rev. Lett.
98
,
108105
(
2007
).
24.
P.
Cloetens
,
R.
Mache
,
M.
Schlenker
, and
S.
Lerbs-Mache
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
14626
(
2006
).
25.
T.
Weitkamp
,
C.
David
,
O.
Bunk
,
J.
Bruder
,
P.
Cloetens
, and
F.
Pfeiffer
,
Eur. J. Radiol.
68
,
S13
(
2008
).
26.
M.
Langer
,
P.
Cloetens
,
A.
Pacureanu
, and
F.
Peyrin
,
Opt. Lett.
37
,
2151
(
2012
).
27.
Data taken at propagation distances shorter than 20 cm could not be used for the reconstruction because the absorption signal was too weak for the alignment with the other data. Using the pure absorption image would have helped to reduce the edge-enhancement artifacts.
28.
J.
Herzen
,
T.
Donath
,
F.
Pfeiffer
,
O.
Bunk
,
C.
Padeste
,
F.
Beckmann
,
A.
Schreyer
, and
C.
David
,
Opt. Express
17
,
10010
(
2009
).
29.
P.
Modregger
,
D.
Lübbert
,
P.
Schäfer
, and
R.
Köhler
,
Phys. Status Solidi A
204
,
2746
(
2007
).
30.
H.
Wen
,
D. E.
Wolfe
,
A. A.
Gomella
,
H.
Miao
,
X.
Xiao
,
C.
Liu
,
S. K.
Lynch
, and
N.
Morgan
,
Rev. Sci. Instrum.
84
,
013706
(
2013
).
31.
D.
Paganin
,
S. C.
Mayo
,
T. E.
Gureyev
,
P. R.
Miller
, and
S. W.
Wilkins
,
J. Microsc.
206
,
33
(
2002
).
32.
M.
Beltran
,
D.
Paganin
,
K.
Uesugi
, and
M.
Kitchen
,
Opt. Express
18
,
6423
(
2010
).
33.
B.
Henke
,
E.
Gullikson
, and
J.
Davis
,
At. Data Nucl. Data Tables
54
,
181
(
1993
).
34.
I.
Zanette
,
M.
Bech
,
A.
Rack
,
G.
Le Duc
,
P.
Tafforeau
,
C.
David
,
J.
Mohr
,
F.
Pfeiffer
, and
T.
Weitkamp
,
Proc. Natl. Acad. Sci.
109
,
10199
10204
(
2012
).
You do not currently have access to this content.