Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.

1.
T. W.
Duerig
,
A.
Pelton
, and
D.
Stockel
,
Mater. Sci. Eng. A
273–275
,
149
160
(
1999
).
2.
B.
Thierry
,
Y.
Merhi
,
L.
Bilodeau
,
C.
Trepanier
, and
M.
Tabrizian
,
Biomaterials
23
,
2997
3005
(
2002
).
3.
A. R.
Pelton
,
V.
Schroeder
,
M. R.
Mitchell
,
X.-Y.
Gong
,
M.
Barney
, and
S. W.
Robertson
,
J. Mech. Behav. Biomed. Mater.
1
,
153
164
(
2008
).
4.
J. E.
Schaffer
,
E. A.
Nauman
, and
L. A.
Stanciu
,
Metall. Mater. Trans. B
43
,
984
994
(
2012
).
5.
T. W.
Duerig
and
M.
Wholey
,
Minimally Invasive Ther. Allied Technol.
11
,
173
178
(
2002
).
6.
S.
Miyazaki
,
V. H.
No
,
K.
Kitamura
,
A.
Khantachawana
, and
H.
Hosoda
,
Int. J. Plast.
16
,
1135
1154
(
2000
).
7.
D. Y.
Li
,
X. F.
Wu
, and
T.
Ko
,
Acta Metall.
38
,
19
24
(
1990
).
8.
S.
Qiu
,
B.
Clausen
,
S. A.
Padula
 II
,
R. D.
Noebe
, and
R.
Vaidyanathan
,
Acta Mater.
59
,
5055
5066
(
2011
).
9.
B.
Ye
,
B. S.
Majumdar
, and
I.
Dutta
,
Acta Mater.
57
,
2403
2417
(
2009
).
10.
O.
Benafan
,
S. A.
Padula
 II
,
R. D.
Noebe
,
D. W.
Brown
,
B.
Clausen
, and
R.
Vaidyanathan
,
Acta Mater.
61
,
3585
3599
(
2013
).
11.
A. P.
Stebner
,
S. C.
Vogel
,
R. D.
Noebe
,
T.
Sisneros
,
B.
Clausen
,
D. W.
Brown
,
A.
Garg
, and
L. C.
Brinson
,
J. Mech. Phys. Solids
61
,
2302
2330
(
2013
).
12.
K.
Gall
,
T. J.
Lim
,
D. L.
McDowell
,
H.
Sehitogluc
, and
Y. I.
Chumlyakov
,
Int. J. Plast.
16
,
1189
1214
(
2000
).
13.
P. F.
Willemse
,
B. J.
Koopman
, and
J.
Beyer
,
J. Phys. IV France
01
(C4),
C4
329
C5
333
(
1991
).
14.
S.
Cai
,
M. R.
Daymond
,
Y.
Ren
, and
J. E.
Schaffer
,
Acta Mater.
61
,
6830
6842
(
2013
).
15.
S.
Cai
,
M. R.
Daymond
, and
Y.
Ren
,
Mater. Sci. Eng. A
580
,
209
216
(
2013
).
16.
A. P.
Hammersley
, FIT2D V9.129 reference manual V3.1, ESRF Internal Report,
1998
.
17.
H. M.
Rietveld
,
J. Appl. Crystallogr.
2
,
65
71
(
1969
).
18.
L.
Lutterotti
,
S.
Matthies
,
H.-R.
Wenk
,
A. S.
Schulz
, and
J. W.
Richardson
, Jr.
,
J. Appl. Phys.
81
,
594
(
1997
).
19.
Y.
Liu
and
Z. L.
Xie
,
Acta Mater.
51
,
5529
5543
(
2003
).
20.
M.
Nishida
,
K.
Yamauchi
,
I.
Itai
,
H.
Ohgi
, and
A.
Chiba
,
Acta Metall.
43
,
1229
1234
(
1995
).
21.
Z.
Nishiyama
,
Martensitic Transformation
(
Academic Press
,
New York
,
1978
).
22.
T. C.
Ozawa
and
S. J.
Kang
,
J. Appl. Cryst.
37
,
679
(
2004
).
23.
J. X.
Zhang
,
M.
Sato
, and
A.
Ishida
,
Acta Mater.
54
,
1185
1198
(
2006
).
24.
M.
Nishida
,
S.
Ii
,
K.
Kitamura
,
T.
Furukawa
,
A.
Chiba
,
T.
Hara
, and
K.
Hiraga
,
Scr. Mater.
39
,
1749
1754
(
1998
).
25.
O.
Benafan
,
S. A.
Padula
 II
,
R. D.
Noebe
,
T. A.
Sisneros
, and
R.
Vaidyanathan
,
J. Appl. Phys.
112
,
093510
(
2012
).
26.
K.
Otsuka
and
X.
Ren
,
Prog. Mater. Sci.
50
,
511
678
(
2005
).
You do not currently have access to this content.