We introduce a multiscale framework based on molecular dynamic (MD) simulation, micromechanics, and finite element method (FEM). A micromechanical model, which considers influences of the interface properties, nanoparticle (NP) size, and microcracks, is developed. Then, we perform MD simulations to characterize the mechanical properties of the nanocomposite system (silica/nylon 6) with varying volume fraction and size of NPs. By comparing the MD with micromechanics results, intrinsic physical properties at interfacial region are derived. Finally, we implement the developed model in the FEM code with the derived interfacial parameters, and predict the mechanical behavior of the nanocomposite at the macroscopic scale.

1.
A. P.
Meera
,
R.
Tlili
,
A.
Boudenne
,
L.
Ibos
,
V.
Poornima
,
S.
Thomas
, and
Y.
Candau
,
J. Elastomers Plast.
44
,
369
(
2012
).
2.
S. R.
Chae
,
J.
Moon
,
S.
Yoon
,
S.
Bae
,
P.
Levitz
,
R.
Winarski
, and
P. J. M.
Monteiro
,
Int. J. Concrete Struct. Mater.
7
,
95
(
2013
). .
3.
T.
Laha
,
S.
Kuchibhatla
,
S.
Seal
,
W.
Li
, and
A.
Agarwal
,
Acta Mater.
55
,
1059
(
2007
).
4.
D.
Ciprari
,
K.
Jacob
, and
R.
Tannenbaum
,
Macromolecules
39
,
6565
(
2006
).
5.
J.
Jordan
,
K. I.
Jacob
,
R.
Tannenbaum
,
M. A.
Sharaf
, and
I.
Jasiuk
,
Mater. Sci. Eng. A
393
,
1
(
2005
).
6.
L.
Zhu
and
K. A.
Narh
,
J. Polym. Sci. Part B: Polym. Phys.
42
,
2391
(
2004
).
7.
B. J.
Yang
,
B. R.
Kim
, and
H. K.
Lee
,
Compos. Struct.
94
,
1420
(
2012
).
8.
B. J.
Yang
,
Y. Y.
Hwang
, and
H. K.
Lee
,
Compos. Struct.
99
,
123
(
2013
). .
9.
H. K.
Lee
,
Comput. Mech.
27
,
504
(
2001
). .
10.
B. R.
Kim
,
S. H.
Pyo
,
G.
Lemaire
, and
H. K.
Lee
,
Interact. Multiscale. Mech.
4
,
173
(
2011
). .
11.
H. L.
Duan
,
H. T.
Wang
,
Z. P.
Huang
, and
B. L.
Karihaloo
,
Proc. R. Soc. A-Math. Phys.
461
,
3335
(
2005
).
12.
D. J.
Bottomley
and
T.
Ogino
,
Phys. Rev. B.
63
,
165412
(
2001
).
13.
H. K.
Lee
and
S. H.
Pyo
,
J. Eng. Mech.
135
,
1108
(
2009
).
14.
S. F.
Ferdous
,
M. F.
Sarker
, and
A.
Adnan
,
Polymer.
54
,
2565
(
2013
).
15.
J.
Weissmuller
and
J. W.
Cahn
,
Acta Mater.
45
,
1899
(
1997
).
16.
See supplementary material at http://dx.doi.org/10.1063/1.4819383 for the process and results of MD simulations.
17.
Z.
Liang
,
H.
K.
Lee
, and
W.
Suaris
,
Int. J. Solids. Struct.
43
,
5674
(
2006
).
18.
G. W. C.
Kaye
and
T. H.
Laby
,
Tables of Physical and Chemical Constants and Some Mathematical Functions
(
Longman Scientific & Technical
,
New York, USA
,
1995
).
19.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
20.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
,
J. Phys. Chem.
94
,
8897
(
1990
).
21.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
22.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
23.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
24.
A. K.
Rappe
and
W. A.
Goddard
,
J. Phys. Chem.
95
,
3358
(
1991
).
25.
Jaguar: Version 7.6, Schrödinger, LLC, New York, USA,
2009
).
26.
F.
Birch
,
Phys. Rev.
71
,
809
(
1947
).
27.
H.
Shin
,
T. A.
Pascal
,
W. A.
Goddard
, and
H.
Kim
,
J. Phys. Chem. B.
117
,
916
(
2013
).
28.
M. M.
Hasan
,
Y.
Zhou
,
H.
Mahfuz
, and
S.
Jeelani
,
Mater. Sci. Eng. A
429
,
181
(
2006
).

Supplementary Material

You do not currently have access to this content.