We reported a high-efficiency and low-cost nano-pattern method, the nanospherical-lens photolithography technique, to fabricate a SiO2 mask for selective area growth. By controlling the selective growth, we got a highly ordered hexagonal nanopyramid light emitting diodes with InGaN/GaN quantum wells grown on nanofacets, demonstrating an electrically driven phosphor-free white light emission. We found that both the quantum well width and indium incorporation increased linearly along the {101¯1} planes towards the substrate and the perpendicular direction to the {101¯1} planes as well. Such spatial distribution was responsible for the broadband emission. Moreover, using cathodoluminescence techniques, it was found that the blue emission originated from nanopyramid top, resembling the quantum dots, green emission from the InGaN quantum wells layer at the middle of sidewalls, and yellow emission mainly from the bottom of nanopyramid ridges, similar to the quantum wires.

1.
S.
Pimputkar
,
J. S.
Speck
,
S. P.
DenBaars
, and
S.
Nakamura
,
Nat. Photonics
3
,
180
(
2009
).
2.
E. F.
Schubert
,
T.
Gessmann
, and
J. K.
Kim
,
Light Emitting Diodes
(
Wiley Online Library
,
2005
).
3.
N.
Kimura
,
K.
Sakuma
,
S.
Hirafune
,
K.
Asano
,
N.
Hirosaki
, and
R.-J.
Xie
,
Appl. Phys. Lett.
90
,
051109
(
2007
).
4.
E. F.
Schubert
and
K.
Kim
,
Science
308
,
1274
(
2005
).
5.
Y.-H.
Ko
,
J.-H.
Kim
,
L.-H.
Jin
,
S.-M.
Ko
,
B.-J.
Kwon
,
J.
Kim
,
T.
Kim
, and
Y.-H.
Cho
,
Adv. Mater.
23
,
5364
(
2011
).
6.
T.
Kim
,
J.
Kim
,
M. S.
Yang
,
S.
Lee
,
Y.
Park
,
U. I.
Chung
, and
Y.
Cho
,
Appl. Phys. Lett.
97
,
241111
(
2010
).
7.
H. P. T.
Nguyen
,
K.
Cui
,
S. F.
Zhang
,
S.
Fathololoumi
, and
Z.
Mi
,
Nanotechnology
22
,
445202
(
2011
).
8.
H.-W.
Lin
,
Y.-J.
Lu
,
H.-Y.
Chen
,
H.-M.
Lee
, and
S.
Gwo
,
Appl. Phys. Lett.
97
,
073101
(
2010
).
9.
P.
Waltereit
,
O.
Brandt
,
A.
Trampert
,
H. T.
Grahn
,
J.
Menniger
,
M.
Ramsteiner
,
M.
Reiche
, and
K. H.
Ploog
,
Nature
406
,
865
(
2000
).
10.
C.-Y.
Cho
,
S.-H.
Han
,
S.-J.
Lee
,
S.-C.
Park
, and
S.-J.
Park
,
J. Electrochem. Soc.
157
,
H86
(
2010
).
11.
C.-Y.
Cho
,
I.-K.
Park
,
M.-K.
Kwon
,
J.-Y.
Kim
,
S.-J.
Park
,
D.-R.
Jung
, and
K.-W.
Kwon
,
Appl. Phys. Lett.
93
,
241109
(
2008
).
12.
S.-P.
Chang
,
Y.-C.
Chen
,
J.-K.
Huang
,
Y.-J.
Cheng
,
J.-R.
Chang
,
K.-P.
Sou
,
Y.-T.
Kang
,
H.-C.
Yang
,
T.-C.
Hsu
, and
H.-C.
Kuo
,
Appl. Phys. Lett.
100
,
061106
(
2012
).
13.
R.
Colby
,
Z. W.
Liang
,
I. H.
Wildeson
,
D. A.
Ewoldt
,
T. D.
Sands
,
R. E.
García
, and
E. A.
Stach
,
Nano Lett.
10
,
1568
(
2010
).
14.
J.-R.
Chang
,
S.-P.
Chang
,
Y.-J.
Li
,
Y.-J.
Cheng
,
K.-P.
Sou
,
J.-K.
Huang
,
H.-C.
Kuo
, and
C.-Y.
Chang
,
Appl. Phys. Lett.
100
,
261103
(
2012
).
15.
T.
Wunderer
,
P.
Brückner
,
B.
Neubert
,
F.
Scholz
,
M.
Feneberg
,
F.
Lipski
,
M.
Schirra
, and
K.
Thonke
,
Appl. Phys. Lett.
89
,
041121
(
2006
).
16.
S.
Srinivasan
,
M.
Stevens
,
F. A.
Ponce
,
H.
Omiya
, and
T.
Mukai
,
Appl. Phys. Lett.
89
,
231908
(
2006
).
17.
H. B.
Yu
,
L. K.
Lee
,
T.
Jung
, and
P. C.
Ku
,
Appl. Phys. Lett.
90
,
141906
(
2007
).
18.
M.
Feneberg
,
F.
Lipski
,
R.
Sauer
,
K.
Thonke
,
T.
Wunderer
,
B.
Neubert
,
P.
Brückner
, and
F.
Scholz
,
Appl. Phys. Lett.
89
,
242112
(
2006
).
19.
T. B.
Wei
,
K.
Wu
,
D.
Lan
,
Q. F.
Yan
,
Y.
Chen
,
C. X.
Du
,
J. X.
Wang
,
Y. P.
Zeng
, and
J. M.
Li
,
Appl. Phys. Lett.
101
,
211111
(
2012
).
20.
W.
Wu
,
A.
Katsnelson
,
O. G.
Memis
, and
H.
Mohseni
,
Nanotechnology
18
,
485302
(
2007
).
21.
C. S.
Xia
,
Z. M. S.
Li
,
Z. Q.
Li
, and
Y.
Sheng
,
Appl. Phys. Lett.
102
,
013507
(
2013
).
You do not currently have access to this content.