The extreme reduction of the thermal conductivity by defects and folds in carbon nanocoils (CNCs) are first demonstrated using nonequilibrium molecular dynamics simulations. The thermal conductivity for two different defect types with five different folds in the CNCs is extensively studied and the maximum reduction can be up to 70% at both room temperature and 600 K by comparison of the corresponding straight single-walled carbon nanotubes. We reveal that the phonon scattering by coupled defects and folds can govern the reduction of the thermal conductivity by calculating phonon polarization vectors.

1.
S.
Amelinckx
,
X. B.
Zhang
,
D.
Bernaerts
,
X. F.
Zhang
,
V.
Ivanov
, and
J. B.
Nagy
,
Science
265
,
635
(
1994
).
2.
X. B.
Zhang
,
X. F.
Zhang
,
D.
Bernaerts
,
G.
van Tendeloo
,
S.
Amelinckx
,
J.
van Landuyt
,
V.
Ivanov
,
J. B.
Nagy
,
Ph.
Lambin
, and
A. A.
Lucas
,
Europhys. Lett.
27
,
141
(
1994
).
3.
K.
Akagi
,
R.
Tamura
, and
M.
Tsukada
,
Phys. Rev. Lett.
74
,
2307
(
1995
).
4.
W. G.
Lu
,
Sci. Technol. Adv. Mater.
6
,
809
(
2005
).
5.
A.
Volodin
,
M.
Ahlskog
,
E.
Seynaeve
,
C.
van Haesendonck
,
A.
Fonseca
, and
J. B
Nagy
,
Phys. Rev. Lett.
84
,
3342
(
2000
).
6.
X.
Chen
,
S.
Zhang
,
D. A.
Dikin
,
W.
Ding
, and
R. S.
Ruoff
,
Nano Lett.
3
,
1299
(
2003
).
7.
X.
Qi
,
W.
Zhong
,
Y.
Deng
,
C.
Au
, and
Y.
Du
,
Carbon
48
,
365
(
2010
).
8.
N.
Tang
,
J.
Wen
,
Y.
Zhang
,
F.
Liu
,
K.
Lin
, and
Y.
Du
,
ACS Nano
4
,
241
(
2010
).
9.
T.
Hayashida
,
L.
Pan
, and
Y.
Nakayama
,
Physica B
323
,
352
(
2002
).
10.
S.
Akita
,
Y.
Ohshima
, and
T.
Arie
,
Appl. Phys. Express
4
,
025101
(
2011
).
11.
J.
Wu
,
S.
Nagao
,
J.
He
, and
Z. L.
Zhang
,
Small
9
,
3545
(
2013
). .
12.
J.
Wu
,
J.
He
,
G. M.
Odegard
,
S.
Nagao
,
Q. S.
Zheng
, and
Z. L.
Zhang
,
J. Am. Chem. Soc.
135
,
13775
(
2013
).
13.
H.
Ma
,
L.
Pan
,
Q.
Zhao
,
Z.
Zhao
, and
J.
Qiu
,
Carbon
50
,
778
(
2012
).
14.
N.
Mingo
and
D. A.
Broido
,
Nano Lett.
5
,
1221
(
2005
).
15.
D. W.
Brenner
,
Phys. Rev. B
42
,
9458
(
1990
).
16.
T.
Chang
,
Appl. Phys. Lett.
90
,
201910
(
2007
).
17.
J.
Zhao
,
N.
Wei
,
Z.
Fan
,
J. W.
Jiang
, and
T.
Rabczuk
,
Nanotechnology
24
,
095702
(
2013
).
18.
Z.
Xu
and
M. J.
Buehler
,
Nanotechnology
20
,
185701
(
2009
).
19.
J.
Zhao
,
J. W.
Jiang
,
Y.
Jia
,
W.
Guo
, and
T.
Rabczuk
,
Carbon
57
,
108
(
2013
).
20.
S.
Nose
,
J. Chem. Phys.
81
,
511
(
1984
).
21.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
22.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
23.
F.
Müller-Plathe
,
J. Chem. Phys.
106
,
6082
(
1997
).
24.
J.
Hone
,
M.
Whitney
,
C.
Piskoti
, and
A.
Zettl
,
Phys. Rev. B
59
,
R2514
(
1999
).
25.
J. W.
Jiang
,
N.
Yang
,
B. S.
Wang
, and
T.
Rabczuk
,
Nano. Lett.
13
,
1670
(
2013
).
26.
J.
Che
,
T.
Cagin
, and
A.
Goddard
,
Nanotechnology
11
,
65
(
2000
).
27.
N.
Yang
,
X.
Ni
,
J. W.
Jiang
, and
B.
Li
,
Appl. Phys. Lett.
100
,
093107
(
2012
).
28.
J. W.
Jiang
,
J.
Lan
,
J. S.
Wang
, and
B.
Li
,
J. Appl. Phys.
107
,
054314
(
2010
).
You do not currently have access to this content.