We report the epitaxial integration of phase-pure EuO on both single-crystal diamond and on epitaxial diamond films grown on silicon utilizing reactive molecular-beam epitaxy. The epitaxial orientation relationship is (001) EuO ‖ (001) diamond and [110] EuO ‖ [100] diamond. The EuO layer is nominally unstrained and ferromagnetic with a transition temperature of 68 ± 2 K and a saturation magnetization of 5.5 ± 0.1 Bohr magnetons per europium ion on the single-crystal diamond, and a transition temperature of 67 ± 2 K and a saturation magnetization of 2.1 ± 0.1 Bohr magnetons per europium ion on the epitaxial diamond film.

1.
Y.
Gurbuz
,
O.
Esame
,
I.
Tekin
,
W.
Kang
, and
J.
Davidson
,
Solid-State Electron.
49
,
1055
1070
(
2005
).
2.
D. D.
Awschalom
,
R. J.
Epstein
, and
R.
Hanson
,
Sci. Am.
297
,
84
91
(
2007
).
3.
J. H.
Lee
,
L.
Fang
,
E.
Vlahos
,
X.
Ke
,
Y. W.
Jung
,
L. F.
Kourkoutis
,
J.-W.
Kim
,
P. J.
Ryan
,
T.
Heeg
,
M.
Roeckerath
,
V.
Goian
,
M.
Bernhagen
,
R.
Uecker
,
P. C.
Hammel
,
K. M.
Rabe
,
S.
Kamba
,
J.
Schubert
,
J. W.
Freeland
,
D. A.
Muller
,
C. J.
Fennie
,
P.
Schiffer
,
V.
Gopalan
,
E.
Johnston-Halperin
, and
D. G.
Schlom
,
Nature
466
,
954
958
(
2010
).
4.
A.
Hachigo
,
H.
Nakahata
,
K.
Higaki
,
S.
Fujii
, and
S.-I.
Shikata
,
Appl. Phys. Lett.
65
,
2556
2558
(
1994
).
5.
H.
Lam
,
J. Cryst. Growth
268
,
144
148
(
2004
).
6.
J. J.
Chen
,
F.
Zeng
,
D. M.
Li
,
J. B.
Niu
, and
F.
Pan
,
Thin Solid Films
485
,
257
261
(
2005
).
7.
S. M.
Lee
,
H.
Murakami
, and
T.
Ito
,
Appl. Surf. Sci.
175–176
,
517
524
(
2001
).
8.
A.
Schmehl
,
V.
Vaithyanathan
,
A.
Herrnberger
,
S.
Thiel
,
C.
Richter
,
M.
Liberati
,
T.
Heeg
,
M.
Röckerath
,
L. F.
Kourkoutis
,
S.
Mühlbauer
,
P.
Böni
,
D. A.
Muller
,
Y.
Barash
,
J.
Schubert
,
Y.
Idzerda
,
J.
Mannhart
, and
D. G.
Schlom
,
Nature Mater.
6
,
882
887
(
2007
).
9.
A.
Melville
,
T.
Mairoser
,
A.
Schmehl
,
D. E.
Shai
,
E. J.
Monkman
,
J. W.
Harter
,
T.
Heeg
,
B.
Holländer
,
J.
Schubert
,
K. M.
Shen
,
J.
Mannhart
, and
D. G.
Schlom
,
Appl. Phys. Lett.
100
,
222101
(
2012
).
10.
A.
Anguelouch
,
A.
Gupta
,
G.
Xiao
,
D.
Abraham
,
Y.
Ji
,
S.
Ingvarsson
, and
C.
Chien
,
Phys. Rev. B
64
,
180408
(
2001
).
11.
G.
Petrich
,
S.
von Molnár
, and
T.
Penney
,
Phys. Rev. Lett.
26
,
885
888
(
1971
).
12.
Y.
Shapira
,
S.
Foner
, and
T. B.
Reed
,
Phys. Rev. B
8
,
2299
(
1973
).
13.
T. R.
McGuire
and
M. W.
Shafer
,
J. Appl. Phys.
35
,
984
988
(
1964
).
14.
K. Y.
Ahn
,
Appl. Phys. Lett.
17
,
347
349
(
1970
).
15.
K.
Lee
and
J. C.
Suits
,
Phys. Lett. A
34
,
141
142
(
1971
).
16.
K.
Lee
and
J. C.
Suits
,
IEEE Trans. Magn.
7
,
391
(
1971
).
17.
R.
Sutarto
,
S.
Altendorf
,
B.
Coloru
,
M.
Moretti Sala
,
T.
Haupricht
,
C.
Chang
,
Z.
Hu
,
C.
Schüßler-Langeheine
,
N.
Hollmann
,
H.
Kierspel
,
J.
Mydosh
,
H.
Hsieh
,
H.-J.
Lin
,
C.
Chen
, and
L.
Tjeng
,
Phys. Rev. B
80
,
085308
(
2009
).
18.
H.
Miyazaki
,
H. J.
Im
,
K.
Terashima
,
S.
Yagi
,
M.
Kato
,
K.
Soda
,
T.
Ito
, and
S.
Kimura
,
Appl. Phys. Lett.
96
,
232503
(
2010
).
19.
T.
Mairoser
,
A.
Schmehl
,
A.
Melville
,
T.
Heeg
,
L.
Canella
,
P.
Böni
,
W.
Zander
,
J.
Schubert
,
D.
Shai
,
E.
Monkman
,
K.
Shen
,
D. G.
Schlom
, and
J.
Mannhart
,
Phys. Rev. Lett.
105
,
257206
(
2010
).
20.
T.
Mairoser
,
A.
Schmehl
,
A.
Melville
,
T.
Heeg
,
W.
Zander
,
J.
Schubert
,
D. E.
Shai
,
E. J.
Monkman
,
K. M.
Shen
,
T. Z.
Regier
,
D. G.
Schlom
, and
J.
Mannhart
,
Appl. Phys. Lett.
98
,
102110
(
2011
).
21.
P.
Liu
,
J.
Tang
,
J. A.
Colón Santana
,
K. D.
Belashchenko
, and
P. A.
Dowben
,
J. Appl. Phys.
109
,
07C311
(
2011
).
22.
K. Y.
Ahn
and
M. W.
Shafer
,
J. Appl. Phys.
41
,
1260
1262
(
1970
).
23.
M. W.
Shafer
,
J. B.
Torrance
, and
T.
Penney
,
J. Phys. Chem. Solids
33
,
2251
2266
(
1972
).
24.
C.
Llinares
,
J. P.
Desfours
,
J. P.
Nadai
,
C.
Godart
,
A.
Percheron
, and
J. C.
Achard
,
Phys. Status Solidi A
25
,
185
192
(
1974
).
25.
M.
Barbagallo
,
N.
Hine
,
J.
Cooper
,
N.-J.
Steinke
,
A.
Ionescu
,
C.
Barnes
,
C.
Kinane
,
R.
Dalgliesh
,
T.
Charlton
, and
S.
Langridge
,
Phys. Rev. B
81
,
235216
(
2010
).
26.
N.
Ingle
and
I.
Elfimov
,
Phys. Rev. B
77
,
121202
(
2008
).
27.
J.
Lettieri
,
V.
Vaithyanathan
,
S. K.
Eah
,
J.
Stephens
,
V.
Sih
,
D. D.
Awschalom
,
J.
Levy
, and
D. G.
Schlom
,
Appl. Phys. Lett.
83
,
975
977
(
2003
).
28.
A. G.
Swartz
,
J.
Ciraldo
,
J. J. I.
Wong
,
Y.
Li
,
W.
Han
,
T.
Lin
,
S.
Mack
,
J.
Shi
,
D. D.
Awschalom
, and
R. K.
Kawakami
,
Appl. Phys. Lett.
97
,
112509
(
2010
).
29.
A.
Melville
,
T.
Mairoser
,
A.
Schmehl
,
T.
Birol
,
T.
Heeg
,
B.
Holländer
,
J.
Schubert
,
C. J.
Fennie
, and
D. G.
Schlom
,
Appl. Phys. Lett.
102
,
062404
(
2013
).
30.
G.
Balasubramanian
,
P.
Neumann
,
D.
Twitchen
,
M.
Markham
,
R.
Kolesov
,
N.
Mizuochi
,
J.
Isoya
,
J.
Achard
,
J.
Beck
,
J.
Tissler
,
V.
Jacques
,
P. R.
Hemmer
,
F.
Jelezko
, and
J.
Wrachtrup
,
Nature Mater.
8
,
383
387
(
2009
).
31.
S.
Gsell
,
T.
Bauer
,
J.
Goldfuß
,
M.
Schreck
, and
B.
Stritzker
,
Appl. Phys. Lett.
84
,
4541
4543
(
2004
).
32.
Element Six, N. V., Cuijk, The Netherlands.
33.
R. W.
Ulbricht
,
A.
Schmehl
,
T.
Heeg
,
J.
Schubert
, and
D. G.
Schlom
,
Appl. Phys. Lett.
93
,
102105
(
2008
).
34.
D. K.
Fork
,
S. M.
Garrison
,
M.
Hawley
, and
T. H.
Geballe
,
J. Mater. Res.
7
,
1641
1651
(
1992
).
35.
J. A.
Alarco
,
G.
Brorsson
,
G.
Ivanov
,
P.
Nilsson
,
E.
Olsson
, and
M.
Löfgren
,
Appl. Phys. Lett.
61
,
723
725
(
1992
).
36.
S. M.
Garrison
,
N.
Newman
,
F.
Cole
,
K.
Char
, and
R. W.
Barton
,
Appl. Phys. Lett.
58
,
2168
2170
(
1991
).
37.
R. W.
Balluffi
,
A.
Brokman
, and
A. H.
King
,
Acta Metall.
30
,
1453
1470
(
1982
).
38.
Y.
Shapira
and
T. B.
Reed
,
AIP Conf. Proc.
5
,
837
839
(
1972
).
39.
B. T.
Matthias
,
R. M.
Bozorth
, and
J. H.
Van Vleck
,
Phys. Rev. Lett.
7
,
160
161
(
1961
).
40.
J. B.
Nelson
and
D. P.
Riley
,
Proc. Phys. Soc.
57
,
160
178
(
1945
).
41.
G. A.
Slack
and
S. F.
Bartram
,
J. Appl. Phys.
46
,
89
98
(
1975
).
42.
D.
Taylor
,
Trans. J. Br. Ceram. Soc.
83
,
5
9
(
1984
).
43.
For the growth of EuO on epitaxial diamond film substrates, the thermal expansion mismatch between EuO and silicon would lead to an in-plane tensile strain of 0.6% and an out-of-plane lattice spacing of 5.127 Å for the 25 °C XRD measurement, assuming that the EuO film is fully relaxed at growth temperature. Using the same assumptions for the growth of EuO on single crystal diamond substrates, the thermal expansion mismatch between EuO and single-crystal diamond would lead to an in-plane tensile strain of 0.7% and an out-of-plane lattice spacing of 5.123 Å for the 25 °C XRD measurement. The measured out-of-plane lattice spacings (5.137 Å and 5.135 Å, respectively) implies that the EuO film was not fully relaxed at the growth temperature, but was clamped during cooling. Alternatively, the film was fully relaxed at the growth temperature, but not fully clamped to the substrate during cooling.
44.
T.
Mairoser
,
F.
Loder
,
A.
Melville
,
D. G.
Schlom
, and
A.
Schmehl
,
Phys. Rev. B
87
,
014416
(
2013
).
You do not currently have access to this content.