The Leidenfrost effect is undesirable in cooling applications as the vapor layer on which the liquid levitates acts as a heat transfer barrier. Here, we report on increasing the Leidenfrost temperature by surface textures that can promote droplet wetting at high superheat via capillary wicking. Counterintuitively, we find that sparser rather than denser textures increase the Leidenfrost temperature. Our experimental results are consistent with a physical model that balances capillary wetting pressures with dewetting pressures exerted by the escaping vapor. The physical mechanism suggests that hierarchical textures have a higher Leidenfrost temperature compared to single-length-scale textures, which is confirmed experimentally.
REFERENCES
1.
V. P.
Carey
, Liquid-Vapor Phase-Change Phenomena
(Taylor & Francis Group, LLC
, New York, NY
, 1992
).2.
W. M.
Rohsenow
, J. P.
Hartnett
, and Y. I.
Cho
, Handbook of Heat Transfer
(McGraw-Hill
, New York
, 1998
).3.
V. K.
Dhir
, Annu. Rev. Fluid Mech.
30
(1
), 365
(1998
).4.
N. A.
Patankar
, Soft Matter
6
(8
), 1613
(2010
).5.
S.
Launay
, A. G.
Fedorov
, Y.
Joshi
, A.
Cao
, and P. M.
Ajayan
, Microelectron. J.
37
(11
), 1158
(2006
).6.
R.
Chen
, M.-C.
Lu
, V.
Srinivasan
, Z.
Wang
, H. H.
Cho
, and A.
Majumdar
, Nano Lett.
9
(2
), 548
(2009
).7.
C.
Li
, Z.
Wang
, P.-I.
Wang
, Y.
Peles
, N.
Koratkar
, and G. P.
Peterson
, Small
4
(8
), 1084
(2008
).8.
Y.-W.
Lu
and S. G.
Kandlikar
, Heat Transfer Eng.
32
(10
), 827
(2011
).9.
K-H.
Chu
, R.
Enright
, E. N.
Wang
, Appl. Phys. Lett.
100
, 241603
(2012
).10.
I. U.
Vakarelski
, N. A.
Patankar
, J. O.
Marston
, D. Y. C.
Chan
, and S. T.
Thoroddsen
, Nature
489
(7415
), 274
(2012
).11.
J. A.
Weibel
, S. S.
Kim
, T. S.
Fisher
, and S. V.
Garimella
, Nanoscale Microscale Thermophys. Eng.
16
(1
), 1
(2012
).12.
A. R.
Betz
, J.
Xu
, H.
Qiu
, and D.
Attinger
, Appl. Phys. Lett.
97
(14
), 141909
(2010
).13.
H.
Jo
, H. S.
Ahn
, S.
Kang
, and M. H.
Kim
, Int. J. Heat Mass Transfer
54
(25–26
), 5643
(2011
).14.
S. P. R.
Kobaku
, A. K.
Kota
, D. H.
Lee
, J. M.
Mabry
, and A.
Tuteja
, Angew. Chem., Int. Ed.
51
(40
), 10109
(2012
).15.
A. R.
Betz
, J.
Jenkins
, C.-J. C.
Kim
, and D.
Attinger
, Int. J. Heat Mass Transfer
57
(2
), 733
(2013
).16.
J.
Kim
, Int. J. Heat Fluid Flow
28
(4
), 753
(2007
).17.
H.
van Dam
, Rep. Prog. Phys.
55
, 2025
(1992
).18.
G.
Grant
, J.
Brenton
, and D.
Drysdale
, Prog. Energy Combust. Sci.
26
(2
), 79
(2000
).19.
S. V.
Garimella
, A. S.
Fleischer
, J. Y.
Murthy
, A.
Keshavarzi
, R.
Prasher
, C.
Patel
, S. H.
Bhavnani
, R.
Venkatasubramanian
, R.
Mahajan
, and Y.
Joshi
, IEEE Trans. Compon. Packag. Technol.
31
(4
), 801
(2008
).20.
J. D.
Bernardin
and I.
Mudawar
, Int. J. Heat Mass Transfer
38
(5
), 863
(1995
).21.
J. G.
Leidenfrost
, De aquae communis nonnullis qualitatibus tractatus
(Ovenius, Duisburg
, Germany
, 1756
).22.
D.
Quéré
, Annu. Rev. Fluid Mech.
45
(1
), 197
(2013
).23.
J.
Buongiorno
, R.
Ballinger
, M.
Driscoll
, B.
Forget
, C.
Forsberg
, M.
Golay
, M.
Kazimi
, N.
Todreas
, and J.
Yanch
, Technical Lessons Learned from the Fukushima-Daichii Accident and Possible Corrective Actions for the Nuclear Industry: An Initial Evaluation
(MIT Center for Advanced Nuclear Energy Systems
, Cambridge, MA
, 2011
).24.
G.
Brumfiel
, “Fukushima crisis: Anatomy of a meltdown,” Nature News Blog (13 March 2011), available at http://blogs.nature.com/news/2011/03/fukushima_crisis_anatomy_of_a.html.25.
C.
Avedisian
and M.
Fatehi
, Int. J. Heat Mass Transfer
31
(8
), 1587
(1988
).26.
Y.
M. Qiao
and S.
Chandra
, Proc. R. Soc. Lond. A
453
(1959
), 673
–689
(1997
).27.
V.
Bertola
, Exp. Fluids
37
, 653
(2004
).28.
V.
Bertola
, Int. J. Heat Mass Transfer
52
(7–8
), 1786
(2009
).29.
G.
Duursma
, K.
Sefiane
, and A.
Kennedy
, Heat Transfer Eng.
30
(13
), 1108
(2009
).30.
C.
M. Weickgenannt
, Y.
Zhang
, S.
S. Ray
, I.
Roisman
, T. G.
Roisman
, C.
Tropea
, A.
L. Yarin
, Phys. Rev. E.
84
, 036310
, (2011
).31.
C.
Avedisian
and J.
Koplik
, Int. J. Heat Mass Transfer
30
(2
), 379
(1987
).32.
S.
Chandra
and C.
Avedisian
, Int. J. Heat Mass Transfer
35
(10
), 2377
(1992
).33.
M.
Prat
, P.
Schmitz
, and D.
Poulikakos
, J. Fluids Eng.
117
(3
), 519
(1995
).34.
J. D.
Bernardin
, C. J.
Stebbins
, and I.
Mudawar
, Int. J. Heat Mass Transfer
40
(1
), 73
(1996
).35.
Q.
Cui
, S.
Chandra
, and S.
McCahan
, J. Heat Transfer
125
(2
), 333
(2003
).36.
H.
Kim
, B.
Truong
, J.
Buongiorno
, and L. W.
Hu
, Appl. Phys. Lett.
98
, 083121
(2011
).37.
H.-M.
Kwon
, J. C.
Bird
, and K. K.
Varanasi
, Bull. Am. Phys. Soc.
56
(18
), BAPS.2011.DFD.H6.3 (2011
), available at http://meetings.aps.org/Meeting/DFD11/Session/H6.3.38.
T.
Tran
, H. J. J.
Staat
, A.
Susarrey-Arce
, T. C.
Foertsch
, A.
van Houselt
, H. J. G. E.
Gardeniers
, A.
Prosperetti
, D.
Lohse
, and C.
Sun
, Soft Matter
9
, 3272
(2013
).39.
J.
Bernardin
, C.
Stebbins
, and I.
Mudawar
, Int. J. Heat Mass Transfer
40
(2
), 247
(1997
).40.
N. Z.
Mehdizadeh
and S.
Chandra
, Proc. R. Soc. London. Ser. A
462
(2074
), 3115
(2006
).41.
T.
Tran
, H. J. J.
Staat
, A.
Prosperetti
, C.
Sun
, and D.
Lohse
, Phys. Rev. Lett.
108
, 036101
(2012
).42.
F.
Celestini
and G.
Kirstetter
, Soft Matter
8
, 5992
(2012
).43.
D.
Arnaldo del Cerro
, Á. G.
Marín
, G. R. B. E.
Römer
, B.
Pathiraj
, D.
Lohse
, and A. J.
Huis in't Veld
, Langmuir
28
(42
), 15106
(2012
).44.
See supplementary material at http://dx.doi.org/10.1063/1.4828673 for the experimental methods.
45.
S. D.
Senturia
, Microsystem Design
(Kluwer Academic Publishers
, Boston, MA
, 2001
).46.
D.
Quéré
, Annu. Rev. Mater. Res.
38
, 71
(2008
).47.
H.-M.
Kwon
, A. T.
Paxson
, K. K.
Varanasi
, and N. A.
Patankar
, Phys. Rev. Lett.
106
(3
), 036102
(2011
).48.
A.
Biance
, C.
Clanet
, and D.
Quéré
, Phys. Fluids
15
, 1632
(2003
).49.
C.
Ishino
, M.
Reyssat
, E.
Reyssat
, K.
Okumura
, and D.
Quéré
, Europhys. Lett.
79
, 56005
(2007
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.