The separate effects of surface wettability, porosity, and roughness on the critical heat flux (CHF) of water were examined using engineered surfaces. Values explored were 0, 5, 10, and 15 μm for Rz (roughness), <5°, ∼75°, and >110° for static contact angle (wettability), and 0 and 50% for pore volume fraction. The porous hydrophilic surface enhanced CHF by 50%–60%, while the porous hydrophobic surface resulted in a reduction of CHF by 97%. Wettability had little effect on the smooth non-porous surface CHF. Surface roughness (Ra, Rq, Rz) had no effect on CHF within the limit of this database.

1.
N.
Todreas
and
M.
Kazimi
,
Nuclear Systems I: Thermal Hydraulic Fundamentals
(
Taylor and Francis
,
New York
,
1993
).
2.
S. S.
Kutateladze
, “
Heat Transfer in Condensation and Boiling
,” Report No. AEC-TR-3770,
1952
.
3.
N.
Zuber
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Report No. AECU-4439,
1959
.
4.
E.
Forrest
,
E.
Williamson
,
J.
Buongiorno
,
L. W.
Hu
,
M.
Rubner
, and
R.
Cohen
,
Int. J. Heat Mass Transfer
53
,
58
67
(
2010
).
5.
H.
Kim
,
J.
Kim
, and
M.
Kim
,
Nucl. Eng. Technol.
38
(
1
),
61
68
(
2006
).
6.
P.
Berenson
, “
On transition boiling heat transfer from a horizontal surface
,” PhD dissertation (
MIT
,
1960
).
7.
J.
Chang
and
S.
You
,
Int. J. Heat Mass Transfer
40
(
18
),
4449
4460
(
1997
).
8.
R.
Chen
,
M.
Lu
,
V.
Srinivassan
,
Z.
Wang
,
H.
Cho
, and
A.
Majumdar
,
Nano Lett.
9
,
548
553
(
2009
).
9.
S.
You
and
J.
O'Connor
,
J. Heat Transfer
117
,
687
692
(
1995
).
10.
K.-H.
Chu
,
R.
Enright
, and
E. N.
Wang
,
Appl. Phys. Lett.
100
(
24
),
241603
(
2012
).
11.
V. K.
Dhir
,
Annu. Rev. Fluid Mech.
30
,
365
401
(
1998
).
12.
H.
Honda
,
H.
Takamastu
, and
J. J.
Wei
,
ASME J. Heat Transfer
124
,
383
390
(
2002
).
13.
Y.
Takata
,
S.
Hidaka
,
M.
Masuda
, and
T.
Ito
,
Int. J. Energy Res.
27
,
111
119
(
2003
).
14.
S.
Malla
,
M.
Amaya
, and
S. M.
You
, in
8th International Conference on Multiphase Flow (ICMF 2013), Jeju, Korea, May 26–31
(Pohang University of Science and Technology (POSTECH),
2013
). Paper No. 128.
15.
R. N.
Wenzel
,
J. Phys. Colloid Chem.
53
(
9
),
1466
(
1949
).
16.
T. G.
Theofanous
and
T. N.
Dinh
,
Multiphase Sci. Technol.
18
(
3
),
251
276
(
2006
).
17.
S.
Kandlikar
,
J. Heat Transfer
123
,
1071
1079
(
2001
).
18.
P.
Berenson
,
Int. J. Heat Mass Transfer
5
,
985
999
(
1962
).
19.
I. L.
Pioro
,
W.
Rohsenow
, and
S. S.
Doerffer
,
Int. J. Heat Mass Transfer
47
(
23
),
5033
5044
(
2004
).
20.
J.
Ramilison
,
P.
Sadasivan
, and
J.
Lienhard
,
J. Heat Transfer
114
,
287
290
(
1992
).
21.
S.
Liter
,
Int. J. Heat Mass Transfer
44
(
22
),
4287
4311
(
2001
).
22.
R.
Furberg
,
B.
Palm
,
S.
Li
,
M.
Toprak
, and
M.
Muhammed
,
J. Heat Transfer
131
(
10
),
101010
(
2009
).
23.
Y.
Polezhaev
and
S.
Kovalev
,
Therm. Eng.
37
(
12
),
617
620
(
1990
).
24.
Micro Chem, SU-8 2000 Permanent Epoxy Negative Photoresist Processing Guidlines, Version 4, Micro Chem, Newton, MA.
25.
D.
Lee
,
Z.
Gemici
,
M.
Rubner
, and
R.
Cohen
,
Langmuir
23
,
8833
8837
(
2007
).
26.
U.
Heisig
,
S.
Schiller
, and
S.
Panzer
,
Electron Bean Technology
(
Wiley
,
1995
).
27.
D.
Mattox
,
Handbook of Physical Vapor Deposition (PVD) Processing
(
Noyes Publications
,
1998
).
28.
H.
O'Hanley
, “
Separate effects of surface roughness, wettability and porosity on boiling heat transfer and critical heat flux and optimization of boiling surfaces
,” Master’s thesis (
MIT
,
2012
).
29.
K.-H.
Chu
,
R.
Enright
,
S.
Joung
,
C. E.
Buie
, and
E. N.
Wang
,
Appl. Phys. Lett.
102
,
151602
(
2013
).
30.
S.
Kandlikar
,
J. Heat Transfer
126
,
8
16
(
2004
).
You do not currently have access to this content.