High thermoelectric performance p-type CeFe4Sb12 composite with rich nanostructures are rapidly prepared by a melt spinning coupled with spark plasma sintering technique. Melt spinning markedly refines the matrix grain size (200–500 nm). We also find evenly distributed FeSb2 nanodots (<50 nm) inside the skutterudite grains due to the inherent structural instability of Fe-containing skutterudites. Meanwhile, by adding excessive Ce into the CeFe4Sb12 matrix, unique CeSb2 nanoinclusions (50–150 nm) are in-situ formed on the grain boundaries. The multi-scaled nanostructures scatter a broad spectrum of heat-carrying phonons, leading to a maximum thermoelectric figure of merit ZT above unity in the skutterudite nanocomposite.

1.
X.
Shi
,
J.
Yang
,
J. R.
Salvador
,
M.
Chi
,
J. Y.
Cho
,
H.
Wang
,
S.
Bai
,
J.
Yang
, and
W.
Zhang
,
J. Am. Chem. Soc.
133
,
7837
(
2011
).
2.
X.
Shi
,
H.
Kong
,
C. P.
Li
,
C.
Uher
,
J.
Yang
,
J. R.
Salvador
,
H.
Wang
,
L.
Chen
, and
W.
Zhang
,
Appl. Phys. Lett.
92
,
182101
(
2008
).
3.
G. P.
Meisner
,
D. T.
Morelli
,
S.
Hu
,
J.
Yang
, and
C.
Uher
,
Phys. Rev. Lett.
80
,
3551
(
1998
).
4.
D. T.
Morelli
and
G. P.
Meisner
,
J. Appl. Phys.
77
,
3777
(
1995
).
5.
B.
Chen
,
J. H.
Xu
,
C.
Uher
,
D. T.
Morelli
,
G. P.
Meisner
,
J. P.
Fleurial
,
T.
Caillat
, and
A.
Borshchevsky
,
Phys. Rev. B
55
,
1476
(
1997
).
6.
M.
Koirala
,
H.
Zhao
,
M.
Pokharel
,
S.
Chen
,
T.
Dahal
,
C.
Opeil
,
G.
Chen
, and
Z.
Ren
,
Appl. Phys. Lett.
102
,
213111
(
2013
).
7.
L. D.
Zhao
,
J.
He
,
S.
Hao
,
C. I.
Wu
,
T. P.
Hogan
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
134
,
16327
(
2012
).
8.
L. D.
Zhao
,
S. H.
Lo
,
J.
He
,
H.
Li
,
K.
Biswas
,
J.
Androulakis
,
C. I.
Wu
,
T. P.
Hogan
,
D. Y.
Chung
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
133
,
20476
(
2011
).
9.
J.
He
,
S. N.
Girard
,
M. G.
Kanatzidis
, and
V. P.
Dravid
,
Adv. Funct. Mater.
20
,
764
(
2010
).
10.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C. I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
489
,
414
(
2012
).
11.
G.
Tan
,
W.
Liu
,
S.
Wang
,
Y.
Yan
,
H.
Li
,
X.
Tang
, and
C.
Uher
,
J. Mater. Chem. A
1
,
12657
(
2013
).
12.
Q.
Jie
,
H.
Wang
,
W.
Liu
,
H.
Wang
,
G.
Chen
, and
Z.
Ren
,
Phys. Chem. Chem. Phys.
15
,
6809
(
2013
).
13.
S.
Mishra
and
T.
DebRoy
,
Acta Mater.
52
,
1183
(
2004
).
14.
P. C.
Canfield
,
J. D.
Thompson
, and
Z.
Fisk
,
J. Appl. Phys.
70
,
5992
(
1991
).
15.
W. S.
Liu
,
B. P.
Zhang
,
J. F.
Li
, and
L. D.
Zhao
,
J. Phys. D: Appl. Phys.
40
,
6784
(
2007
).
16.
A. F.
May
,
E. S.
Toberer
,
A.
Saramat
, and
G. J.
Snyder
,
Phys. Rev. B
80
,
125205
(
2009
).
17.
B. C.
Sales
,
D.
Mandrus
,
B. C.
Chakoumakos
,
V.
Keppens
, and
J. R.
Thompson
,
Phys. Rev. B
56
,
15081
(
1997
).
18.
V.
Keppens
,
D.
Mandrus
,
B. C.
Sales
,
B. C.
Chakoumakos
,
P.
Dai
,
R.
Coldea
,
M. B.
Maple
,
D. A.
Gajewski
,
E. J.
Freeman
, and
S.
Bennington
,
Nature
395
,
876
(
1998
).
19.
D. J.
Bergman
and
O.
Levy
,
J. Appl. Phys.
70
,
6821
(
1991
).
You do not currently have access to this content.