We have investigated the Ti-site substitution effect on the magnetic properties of antiferromagnetic insulator EuTiO3 with a Néel temperature of ∼5 K. Partial substitution of Ti4+ with heterovalent Al3+ or Ga3+ turns the corresponding amount of magnetic Eu2+ into non-magnetic Eu3+. Both EuTi1−xAlxO3 (0.05 ≤ x ≤ 0.10) and EuTi1−xGaxO3 (0.05 ≤ x ≤ 0.10) exhibit ferromagnetic (FM) insulating behavior below ∼4 K. The Eu2+/Eu3+ mixed valence state probably contributes to the emergence of the FM behavior. Fine control of the magneto-electric (ME) phases of EuTi1−xAlxO3 and EuTi1−xGaxO3 would lead to intriguing ME phenomena such as giant ME effect.

2.
S.-W.
Cheong
and
M.
Mostovoy
,
Nature Mater.
6
,
13
(
2007
).
3.
Y.
Tokura
and
S.
Seki
,
Adv. Mater.
22
,
1554
(
2010
).
4.
A.
Bussmann-Holder
,
J.
Köhler
,
P. K.
Kremer
, and
J. M.
Law
,
Phys. Rev. B
83
,
212102
(
2011
).
5.
M.
Allieta
,
M.
Scavini
,
L. J.
Spalek
,
V.
Scagnoli
,
H. C.
Walker
,
C.
Panagopoulos
,
S. S.
Saxena
,
T.
Katsufuji
, and
C.
Mazzoli
,
Phys. Rev. B
85
,
184107
(
2012
).
6.
V.
Goian
,
S.
Kamba
,
O.
Pacherová
,
J.
Drahokoupil
,
L.
Palatinus
,
M.
Dušek
,
J.
Rohlíček
,
M.
Savinov
,
F.
Laufek
,
W.
Schranz
 et al,
Phys. Rev. B
86
,
054112
(
2012
).
7.
T.
Katsufuji
and
H.
Takagi
,
Phys. Rev. B
64
,
054415
(
2001
).
8.
V. V.
Shvartsman
,
P.
Borisov
,
W.
Kleemann
,
S.
Kamba
, and
T.
Katsufuji
,
Phys. Rev. B
81
,
064426
(
2010
).
9.
C.-L.
Chien
,
S.
DeBenedetti
, and
F.
De
S.
Barros
,
Phys. Rev. B
10
,
3913
(
1974
).
10.
R.
Ranjan
,
H. S.
Nabi
, and
R.
Pentcheva
,
J. Phys.: Condens. Matter
19
,
406217
(
2007
).
11.
H.
Akamatsu
,
Y.
Kumagai
,
F.
Oba
,
K.
Fujita
,
H.
Murakami
,
K.
Tanaka
, and
I.
Tanaka
,
Phys. Rev. B
83
,
214421
(
2011
).
12.
J.-W.
Kim
,
P.
Thompson
,
S.
Brown
,
P. S.
Normile
,
J. A.
Schlueter
,
A.
Shkabko
,
A.
Weidenkaff
, and
P. J.
Ryan
,
Phys. Rev. Lett.
110
,
027201
(
2013
).
13.
C. J.
Fennie
and
K. M.
Rabe
,
Phys. Rev. Lett.
97
,
267602
(
2006
).
14.
J. H.
Lee
,
X.
Ke
,
N. J.
Podraza
,
L. F.
Kourkoutis
,
T.
Heeg
,
M.
Roeckerath
,
J. W.
Freeland
,
C. J.
Fennie
,
J.
Schubert
,
D. A.
Muller
 et al,
Appl. Phys. Lett.
94
,
212509
(
2009
).
15.
J. H.
Lee
,
L.
Fang
,
E.
Vlahos
,
X.
Ke
,
Y. W.
Jung
,
L. F.
Kourkoutis
,
J. W.
Kim
,
P. J.
Ryan
,
T.
Heeg
,
M.
Roeckerath
 et al,
Nature
466
,
954
(
2010
).
16.
N. L.
Henderson
,
X.
Ke
,
P.
Schiffer
, and
R. E.
Schaak
,
J. Solid State Chem.
183
,
631
(
2010
).
17.
T.
Katsufuji
and
Y.
Tokura
,
Phys. Rev. B
60
,
R15021
(
1999
).
18.
Z.
Guguchia
,
A.
Shengelaya
,
H.
Keller
,
J.
Köhler
, and
A.
Bussmann-Holder
,
Phys. Rev. B
85
,
134113
(
2012
).
19.
H.
Wu
,
Q.
Jiang
, and
W. Z.
Shen
,
Phys. Rev. B
69
,
014104
(
2004
).
20.
K.
Kugimiya
,
K.
Fujita
,
K.
Tanaka
, and
K.
Hirao
,
J. Magn. Magn. Mater.
310
,
2268
(
2007
).
21.
T.
Wei
,
Q. G.
Song
,
Q. J.
Zhou
,
Z. P.
Li
,
X. L.
Qi
,
W. P.
Liu
,
Y. R.
Guo
, and
J.-M.
Liu
,
Appl. Surf. Sci.
258
,
599
(
2011
).
22.
Y.
Zong
,
K.
Fujita
,
H.
Akamatsu
,
S.
Murai
, and
K.
Tanaka
,
J. Solid State Chem.
183
,
168
(
2010
).
23.
N.
Ikeda
,
H.
Ohsumi
,
K.
Ohwada
,
K.
Ishii
,
T.
Inami
,
K.
Kakurai
,
Y.
Murakami
,
K.
Yoshii
,
S.
Mori
,
Y.
Horibe
, and
H.
Kito
,
Nature
436
,
1136
(
2005
).
You do not currently have access to this content.