Most previous analytical theories for microscale heat transfer are limited to low temperatures (≤100 K). We present simple yet general analytical formulae which reveal the essential features of the thermal properties of two-dimensional nanomaterials in a wide range of temperatures by full coverage of guided wave and bulk wave modes. In particular, we are able to handle the intermediate ballistic-diffusive regime. As an illustration, the formulae are applied on graphene to obtain its specific heat, thermal conductance, and thermal conductivity. The predictions are remarkably consistent with existing theories and experiments.

1.
A. A.
Balandin
,
Nature Mater.
10
,
569
(
2011
).
2.
A.
Majumdar
,
Nat. Nanotechnol.
4
,
214
(
2009
).
3.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
4.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
).
5.
S.
Ghosh
,
I.
Calizo
,
D.
Teweldebrhan
,
E. P.
Pokatilov
,
D. L.
Nika
,
A. A.
Balandin
,
W.
Bao
,
F.
Miao
, and
C. N.
Lau
,
Appl. Phys. Lett.
92
,
151911
(
2008
).
6.
N.
Mingo
and
D. A.
Broido
,
Phys. Rev. Lett.
95
,
096105
(
2005
).
7.
R.
Prasher
,
Phys. Rev. B
74
,
165413
(
2006
).
8.
K.
Saito
,
J.
Nakamura
, and
A.
Natori
,
Phys. Rev. B
76
,
115409
(
2007
).
9.
R.
Prasher
,
T.
Tong
, and
A.
Majumdar
,
Nano Lett.
8
,
99
(
2008
).
10.
E.
Muñoz
,
J.
Lu
, and
B. I.
Yakobson
,
Nano Lett.
10
,
1652
(
2010
).
11.
J. D.
Achenbach
,
Wave Propagation in Elastic Solids
(
North-Holland
,
Amsterdam
,
1987
).
12.
A. I.
Beltzer
,
Acoustics of Solids
(
Springer-Verlag
,
New York
,
1988
).
13.
K.
Graff
,
Wave Motion in Elastic Solids
(
Dover
,
New York
,
1991
).
14.
15.
E.
Pop
,
V.
Varshney
, and
A. K.
Roy
,
MRS Bull.
37
,
1273
(
2012
).
16.
J.
Hone
,
B.
Batlogg
,
Z.
Benes
,
A. T.
Johnson
, and
J. E.
Fischer
,
Science
289
,
1730
(
2000
).
17.
V. N.
Popov
,
Phys. Rev. B
66
,
153408
(
2002
).
18.
L. G. C.
Rego
and
G.
Kirczenow
,
Phys. Rev. Lett.
81
,
232
(
1998
).
19.
K.
Schwab
,
E. A.
Henriksen
,
J. M.
Worlock
, and
M. L.
Roukes
,
Nature
404
,
974
(
2000
).
20.
I. I.
Guseinov
and
B. A.
Mamedov
,
Int. J. Thermophys.
28
,
1420
(
2007
).
21.
D. T.
Morelli
,
J. P.
Heremans
, and
G. A.
Slack
,
Phys. Rev. B
66
,
195304
(
2002
).
22.
D. L.
Nika
,
S.
Ghosh
,
E. P.
Pokatilov
, and
A. A.
Balandin
,
Appl. Phys. Lett.
94
,
203103
(
2009
).
23.
Z.
Aksamija
and
I.
Knezevic
,
Appl. Phys. Lett.
98
,
141919
(
2011
).
24.
W.
Cai
,
A. L.
Moore
,
Y.
Zhu
,
X.
Li
,
S.
Chen
,
L.
Shi
, and
R. S.
Ruoff
,
Nano Lett.
10
,
1645
(
2010
).
25.
S.
Chen
,
A. L.
Moore
,
W.
Cai
,
J. W.
Suk
,
J.
An
,
C.
Mishra
,
C.
Amos
,
C. W.
Magnuson
,
J.
Kang
,
L.
Shi
, and
R. S.
Ruoff
,
ACS Nano
5
,
321
(
2011
).
26.
J. U.
Lee
,
D.
Yoon
,
H.
Kim
,
S. W.
Lee
, and
H.
Cheong
,
Phys. Rev. B
83
,
081419
R
(
2011
).
27.
G.
Wu
and
B.
Li
,
Phys. Rev. B
76
,
085424
(
2007
).
28.
Z.
Guo
,
D.
Zhang
, and
X. G.
Gong
,
Appl. Phys. Lett.
95
,
163103
(
2009
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4826693 for the details of derivations; the scattering mechanisms; and simulation details.

Supplementary Material

You do not currently have access to this content.