We report generation of electricity from the limitless thermal motion of ions across a two-dimensional (2D) silicon (Si) surface at room temperature. A typical Si device with Au-Ag electrodes could generate an open-circuit voltage of up to 0.40 V in a 5M CuCl2 solution and an output current of more than 11 μA when a 25 kΩ resistor was loaded into the circuit. A possible momentum transfer process was proposed to explain the electronic excitation, and modified thermionic emission theory was used to explain the experimental results. This finding provides a self-charging technology for energy harvesting from ambient heat.
REFERENCES
1.
B. H.
Lee
, J. Q.
He
, R. P. H.
Chang
, and M. G.
Kanatzidis
, Nature
485
, 486
–489
(2012
).2.
G. J.
Snyder
and E. S.
Toberer
, Nature Mater.
7
, 105
–114
(2008
).3.
Z. L.
Wang
and J. H.
Song
, Science
312
, 242
–246
(2006
).4.
Z. L.
Wang
, G.
Zhu
, Y.
Yang
, S. H.
Wang
, and C. F.
Pan
, Mater. Today
15
, 532
–543
(2012
).5.
S.
Ghosh
, A. K.
Sood
, and N.
Kumar
, Science
299
, 1042
–1044
(2003
).6.
P.
Dhiman
, F.
Yavari
, X.
Mi
, H.
Gullapalli
, Y. F.
Shi
, P. M.
Ajayan
, and N.
Koratkar
, Nano Lett.
11
, 3123
–3127
(2011
).7.
F. J.
DiSalvo
, Science
285
, 703
–706
(1999
).8.
R. W.
Whatmore
, Rep. Prog. Phys.
49
, 1335
–1386
(1986
).9.
H. N.
Waltenburg
and J. T.
Yates
, Chem. Rev.
95
, 1589
–1673
(1995
).10.
C. B.
Duke
, Chem. Rev.
96
, 1237
–1259
(1996
).11.
G. P.
Srivastava
, Rep. Prog. Phys.
60
, 561
–613
(1997
).12.
B. E.
Conway
, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
(Kluwer Academic/Plenum Publishers
, New York
, 1999
).13.
V.
Kozic
and L. C.
Lipus
, J. Chem. Inf. Comput. Sci.
43
, 1815
–1819
(2003
).14.
T. I.
Lee
, W. J.
Choi
, J. P.
Kar
, Y. H.
Kang
, J. H.
Jeon
, J. H.
Park
, Y. S.
Kim
, H. K.
Baik
, and M.
Myoung
, Nano Lett.
10
, 3517
–3523
(2010
).15.
C. S.
Lao
, J.
Liu
, P. X.
Gao
, L. Y.
Zhang
, D.
Davidovic
, R.
Tummala
, and Z. L.
Wang
, Nano Lett.
6
, 263
–266
(2006
).16.
See supplementary material at http://dx.doi.org/10.1063/1.4825269 for materials, methods, measurement results, and discussions.
17.
L. M.
Loewenstein
, F.
Charpin
, and P. M.
Mertens
, J. Electrochem. Soc.
146
, 719
–727
(1999
).18.
S.
Baldelli
, Acc. Chem. Res.
41
, 421
–431
(2008
).19.
J. H.
Chen
, C.
Jang
, S.
Adam
, M. S.
Fuhrer
, E. D.
Williams
, and M.
Ishigami
, Nature Phys.
4
, 377
–381
(2008
).20.
A.
Das
, S.
Pisana
, B.
Chakraborty
, S.
Piscanec
, S. K.
Saha
, U. V.
Waghmare
, K. S.
Novoselov
, H. R.
Krishnamurthy
, A. K.
Geim
, A. C.
Ferrari
, and A. K.
Sood
, Nat. Nanotechnol.
3
, 210
–215
(2008
).21.
M. S.
Dresselhaus
, A.
Jorio
, M.
Hofmann
, and G. S.
Dresselhaus
, Nano Lett.
10
, 751
–758
(2010
).22.
23.
D.
Myers
, Surfaces, Interfaces and Colloids—Principles and Applications
, 2nd ed. (Wiley-VCH
, New York
, 1999
).24.
25.
N. E.
McGruer
, J.
Browning
, S.
Meassick
, M.
Gilmore
, W. J.
Bintz
, and C.
Chan
, J. Vac. Sci. Technol. B
11
, 441
–444
(1993
).26.
R. A.
Huggins
, Advanced Batteries: Materials Science Aspects
(Springer-Verlag
, New York
, 2009
).27.
S. M.
Sze
, Physics of Semiconductor Devices
, 3rd ed. (John Wiley & Sons
, New York
, 2006
).28.
J.
Schmidt
, N.
Thiemann
, R.
Bock
, and R.
Brendel
, J. Appl. Phys.
106
, 093707
(2009
).29.
A. K.
Sood
and S.
Ghosh
, Phys. Rev. Lett.
93
, 086601
(2004
).30.
J.
Yin
, J. X.
Zhou
, X. M.
Li
, Y. Q.
Chen
, G.
Tai
, and W.
Guo
, Appl. Phys. Lett.
99
, 073103
(2011
).31.
V.
Čápek
and D. P.
Sheehan
, Challenges to the Second Law of Thermodynamics (Theory and Experiment)
, Fundamental Theories of Physics Series, Vol. 146 (Springer, Dordrecht
, The Netherlands
, 2005
).32.
A. V.
Nikulov
and D. P.
Sheehan
, Entropy
6
, 1
–10
(2004
).33.
P.
Keefe
, Entropy
6
, 116
–127
(2004
).34.
V.
Čápek
and D. P.
Sheehan
, Physica A
304
, 461
–479
(2002
).35.
G. M.
Wang
, E. M.
Sevick
, E.
Mittag
, D. J.
Searles
, and D. J.
Evans
, Phys. Rev. Lett.
89
, 050601
(2002
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.