The significant diffusion of Ga under Ga-rich conditions in GaAs and GaSb is counter intuitive as the concentration of Ga vacancies should be depressed although Ga vacancies are necessary to interpret the experimental evidence for Ga transport. To reconcile the existence of Ga vacancies under Ga-rich conditions, transformation reactions have been proposed. Here, density functional theory is employed to calculate the formation energies of vacancies on both sublattices and the migration energy barriers to overcome the formation of the vacancy-antisite defect. Transformation reactions enhance the vacancy concentration in both materials and migration energy barriers indicate that Ga vacancies will dominate.

1.
P. S.
Dutta
,
H. L.
Bhat
, and
V.
Kumar
,
J. Appl. Phys.
81
,
5821
(
1997
).
2.
J. A.
del Alamo
,
Nature (London)
479
,
317
(
2011
).
3.
L.
Lin
and
J.
Robertson
,
Appl. Phys. Lett.
98
,
082903
(
2011
);
H. A.
Tahini
,
A.
Chroneos
,
S. T.
Murphy
,
U.
Schwingenschlögl
, and
R. W.
Grimes
,
J. Appl. Phys.
114
,
063517
(
2013
);
A.
Chroneos
and
H.
Bracht
,
J. Appl. Phys.
104
,
093714
(
2008
);
S. T.
Murphy
,
A.
Chroneos
,
R. W.
Grimes
,
C.
Jiang
, and
U.
Schwingenschlögl
,
Phys. Rev. B
84
,
184108
(
2011
).
4.
H. P.
Komsa
and
A.
Pasquarello
,
J. Phys.: Condens. Matter
24
,
045801
(
2012
);
[PubMed]
D.
Colleoni
and
A.
Pasquarello
,
Microelectron. Eng.
109
,
50
(
2013
).
5.
A.
Kley
,
P.
Ruggerone
, and
M.
Scheffler
,
Phys. Rev. Lett.
79
,
5278
(
1997
);
B. A.
Joyce
and
D. D.
Vvedensky
,
Mater. Sci. Eng. R
46
,
127
(
2004
);
J. L.
Roehl
,
A.
Kolagatla
,
V. K. K.
Gangur
,
S. V.
Khare
, and
R. J.
Phaneuf
,
Phys. Rev. B
82
,
165335
(
2010
);
S. T.
Murphy
,
A.
Chroneos
,
C.
Jiang
,
U.
Schwingenschlögl
, and
R. W.
Grimes
,
Phys. Rev. B
82
,
073201
(
2010
);
J. L.
Rohl
,
S.
Aravelli
,
S. V.
Khare
, and
R. J.
Phaneuf
,
Surf. Sci.
606
,
1303
(
2012
).
6.
H.
Bracht
and
S.
Brotzmann
,
Phys. Rev. B
71
,
115216
(
2005
).
7.
W. S.
Jung
,
J. H.
Park
,
A.
Nainani
,
D.
Nam
, and
K. C.
Saraswat
,
Appl. Phys. Lett.
101
,
072104
(
2012
).
8.
H.
Bracht
,
S. P.
Nicols
,
W.
Walukiewicz
,
J. P.
Silveira
,
F.
Briones
, and
E. E.
Haller
,
Nature (London)
408
,
69
(
2000
).
9.
H.
Bracht
,
S. P.
Nicols
,
E. E.
Haller
,
J. P.
Silveira
, and
F.
Briones
,
J. Appl. Phys.
89
,
5393
(
2001
).
10.
H.
Bracht
,
M. S.
Norseng
,
E. E.
Haller
, and
K.
Eberl
,
Physica B
309–310
,
831
(
2001
).
11.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
12.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
13.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
14.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
15.
C.
Freysoldt
,
J.
Neugebauer
, and
C. G.
Van de Walle
,
Phys. Rev. Lett.
102
,
16402
(
2009
).
16.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
17.
M.
Bockstedte
and
M.
Scheffler
,
Z. Phys. Chem. (Leipzig)
200
,
195
(
1997
).
18.
D.
Weiler
and
H.
Mehrer
,
Philos. Mag. A
49
,
309
(
1984
).
19.
J. A.
Van Vechten
,
J. Phys. C
17
,
L933
(
1984
).
20.
F.
El-Mellouhi
and
N.
Mousseau
,
Phys. Rev. B
74
,
205207
(
2006
).
21.
F.
El-Mellouhi
and
N.
Mousseau
,
Physica B
401–402
,
658
(
2007
).
You do not currently have access to this content.