We have examined the formation mechanisms of InAs quantum dots (QDs) via annealing In islands under As flux. We report two distinct mechanisms, droplet epitaxy (DE) and solid phase epitaxy (SPE), which depend on As surface coverage. On c(4 × 4) GaAs surfaces, QDs form by DE. For c(4 × 4)α, one-to-one conversion from In islands to InAs QDs is observed. For c(4 × 4)β, lower densities of larger QDs are observed, presumably due to enhanced In surface diffusion in the absence of metastable Ga-As dimers. For the As capped surface, In deposition leads to an amorphous film, from which QDs nucleate by SPE during annealing.

1.
A.
Marti
,
L.
Cuadra
, and
A.
Luque
, in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (
IEEE
,
New York
,
2000
), pp.
940
943
.
2.
A.
Marti
,
E.
Antolin
,
C. R.
Stanley
,
C. D.
Farmer
,
N.
Lopez
,
P.
Diaz
,
E.
Canovas
,
P. G.
Linares
, and
A.
Luque
,
Phys. Rev. Lett.
97
,
247701
(
2006
).
3.
S.
Huang
,
A. V.
Semichaevsky
,
L.
Webster
,
H. T.
Johnson
, and
R. S.
Goldman
,
J. Appl. Phys.
110
,
073105
(
2011
).
4.
A.
Scaccabarozzi
,
S.
Adorno
,
S.
Bietti
,
M.
Acciarri
, and
S.
Sanguinetti
,
Phys. Status Solidi (RRL)
7
,
173
(
2013
).
5.
D. L.
Huffaker
,
G.
Park
,
Z.
Zou
,
O. B.
Shchekin
, and
D. G.
Deppe
,
Appl. Phys. Lett.
73
,
2564
(
1998
).
6.
J.
Phillips
,
K.
Kamath
, and
P.
Bhattacharya
,
Appl. Phys. Lett.
72
,
2020
(
1998
).
7.
N. M.
Park
,
T. S.
Kim
, and
S. J.
Park
,
Appl. Phys. Lett.
78
,
2575
(
2001
).
8.
J. X.
Chen
,
A.
Markus
,
A.
Fiore
,
U.
Oesterle
,
R. P.
Stanley
,
J. F.
Carlin
,
R.
Houdre
,
M.
Ilegems
,
L.
Lazzarini
,
L.
Nasi
,
M. T.
Todaro
,
E.
Piscopiello
,
R.
Cingolani
,
M.
Catalano
,
J.
Katcki
, and
J.
Ratajczak
,
J. Appl. Phys.
91
,
6710
(
2002
).
9.
N.
Koguchi
,
S.
Takahashi
, and
T.
Chikyow
,
J. Cryst. Growth
111
,
688
(
1991
).
10.
J. S.
Kim
and
N.
Koguchi
,
Appl. Phys. Lett.
85
,
5893
(
2004
).
11.
N.
Koguchi
and
K.
Ishige
,
Jpn. J. Appl. Phys., Part 1
32
,
2052
(
1993
).
12.
E.
Cohen
,
S.
Yochelis
,
O.
Westreich
,
S.
Shusterman
,
D. P.
Kumah
,
R.
Clarke
,
Y.
Yacoby
, and
Y.
Paltiel
,
Appl. Phys. Lett.
98
,
243115
(
2011
).
13.
T.
Noda
and
T.
Mano
,
Appl. Surf. Sci.
254
,
7777
(
2008
).
14.
A.
Urbanczyk
and
R.
Notzel
,
J. Cryst. Growth
341
,
24
(
2012
).
15.
C.
Zhao
,
Y. H.
Chen
,
B.
Xu
,
P.
Jin
, and
Z. G.
Wang
,
Appl. Phys. Lett.
91
,
033112
(
2007
).
16.
A.
Ohtake
,
P.
Kocán
,
J.
Nakamura
,
A.
Natori
, and
N.
Koguchi
,
Phys. Rev. Lett.
92
,
236105
(
2004
).
17.
See supplementary material at http://dx.doi.org/10.1063/1.4822052 for details of TEM studies.
18.
A.
Urbanczyk
,
G. J.
Hamhuis
, and
R.
Notzel
,
J. Appl. Phys.
107
,
014312
(
2010
).
19.
T.
Sugaya
,
T.
Amano
, and
K.
Komori
,
J. Appl. Phys.
100
,
063107
(
2006
).
20.
T.
Sugaya
,
T.
Amano
, and
K.
Komori
,
J. Appl. Phys.
104
,
083106
(
2008
).
21.
K.
Sumitomo
,
T.
Nishioka
, and
T.
Ogino
,
J. Vac. Sci. Technol. B
13
,
387
(
1995
).
22.
D. Z.
Hu
,
D. T.
Zhao
,
W. R.
Jiang
,
B.
Shi
,
Y. L.
Fan
, and
Z. M.
Jiang
,
J. Cryst. Growth
236
,
557
(
2002
).
23.
Y.
Shinoda
,
N.
Shimizu
,
H.
Hibino
,
T.
Nishioka
,
C.
Heimlich
,
Y.
Kobayashi
,
S.
Ishizawa
,
K.
Sugii
, and
M.
Seki
,
Appl. Surf. Sci.
60
,
112
(
1992
).

Supplementary Material

You do not currently have access to this content.