We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.

1.
S.
Tibbits
,
Archit. Des.
82
,
68
(
2012
).
2.
S.
Tibbits
and
K.
Cheung
,
Assem. Autom.
32
,
216
225
(
2012
).
3.
Y. P.
Liu
,
K.
Gall
,
M. L.
Dunn
,
A. R.
Greenberg
, and
J.
Diani
,
Int. J. Plast.
22
,
279
(
2006
).
4.
T. D.
Nguyen
,
H. J.
Qi
,
F.
Castro
, and
K. N.
Long
,
J. Mech. Phys. Solids.
56
,
2792
(
2008
).
5.
H. J.
Qi
,
T. D.
Nguyen
,
F.
Castro
,
C. M.
Yakacki
, and
R.
Shandas
,
J. Mech. Phys. Solids.
56
,
1730
(
2008
).
6.
V.
Srivastava
,
S. A.
Chester
,
N. M.
Ames
, and
L.
Anand
,
Int. J. Plast.
26
,
1138
(
2010
).
7.
K. K.
Westbrook
,
P. H.
Kao
,
F.
Castro
,
Y. F.
Ding
, and
H. J.
Qi
,
Mech. Mater.
43
,
853
(
2011
).
8.
Q.
Ge
,
X. F.
Luo
,
E. D.
Rodriguez
,
X.
Zhang
,
P. T.
Mather
,
M. L.
Dunn
, and
H. J.
Qi
,
J. Mech. Phys. Solids.
60
,
67
(
2012
).
9.
X. F.
Luo
and
P. T.
Mather
,
Macromolecules
42
,
7251
(
2009
).
10.
E. D.
Rodriguez
,
C. W.
Weed
, and
P. T.
Mather
,
Macromol. Chem. Phys.
214
,
1247
(
2013
).
11.
J. G.
Boyd
and
D. C.
Lagoudas
,
J. Intell. Mater. Syst. Struct.
5
,
333
(
1994
).
12.
L. J.
Stiltner
,
A. M.
Elliott
, and
C. B.
Williams
, in
Solid Freeform Fabrication Symp. Proc.
,
2011
, Vol.
22
, p.
583
.
13.
K.
Yu
,
T.
Xie
,
J. S.
Leng
,
Y. F.
Ding
, and
H. J.
Qi
,
Soft Matter
8
,
5687
(
2012
).
14.
Z. Y.
Guo
,
X. Q.
Peng
, and
B.
Moran
,
J. Mech. Phys. Solids
54
,
1952
(
2006
).
15.
Z. Y.
Guo
,
X. Q.
Peng
, and
B.
Moran
,
Int. J. Solids Struct.
44
,
1949
(
2007
).
16.
O.
Lopez-Pamies
and
M. I.
Idiart
,
J. Engrg. Math.
68
,
57
(
2010
).
17.
G.
deBotton
,
I.
Hariton
, and
E. A.
Socolsky
,
J. Mech. Phys. Solids
54
,
533
(
2006
).
18.
Z.
Chen
,
C.
Majidi
,
D. J.
Srolovitz
, and
M.
Haataja
,
Appl. Phys. Lett.
98
,
011906
(
2011
).
19.
J. S.
Huang
,
J.
Liu
,
B.
Kroll
,
K.
Bertoldi
, and
D. R.
Clarke
,
Soft Matter
8
,
6291
(
2012
).
20.
N.
Oxman
,
Virtual Phys. Prototyp.
6
,
3
(
2011
).
21.
M. L.
Dunn
and
K.
Maute
,
Mech. Mater.
41
,
1083
(
2009
).
22.
M.
Howard
,
J.
Pajot
,
K.
Maute
, and
M. L.
Dunn
,
J. Microelectromech. Syst.
18
,
1137
(
2009
).
23.
J. M.
Pajot
,
K.
Maute
,
Y. H.
Zhang
, and
M. L.
Dunn
,
Int. J. Solids Struct.
43
,
1832
(
2006
).
24.
C. J.
Rupp
,
A.
Evgrafov
,
K.
Maute
, and
M. L.
Dunn
,
J. Intell. Mater. Syst. Struct.
20
,
1923
(
2009
).
25.
M. L.
Dunn
,
Y. H.
Zhang
, and
V. M.
Bright
,
J. Membr. Sci.
11
,
372
(
2002
).
26.
Y. H.
Zhang
and
M. L.
Dunn
,
J. Mech. Phys. Solids
52
,
2101
(
2004
).
27.
See supplementary material at http://dx.doi.org/10.1063/1.4819837 for thermomechanical properties, theories of PAC lamina and detailed layouts of PAC laminates.

Supplementary Material

You do not currently have access to this content.